#include "Plane.h" #include void Plane::init_barometer(bool full_calibration) { gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer"); if (full_calibration) { barometer.calibrate(); } else { barometer.update_calibration(); } gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); } void Plane::init_rangefinder(void) { rangefinder.init(); } /* read the rangefinder and update height estimate */ void Plane::read_rangefinder(void) { // notify the rangefinder of our approximate altitude above ground to allow it to power on // during low-altitude flight when configured to power down during higher-altitude flight float height; #if AP_TERRAIN_AVAILABLE if (terrain.status() == AP_Terrain::TerrainStatusOK && terrain.height_above_terrain(height, true)) { rangefinder.set_estimated_terrain_height(height); } else #endif { // use the best available alt estimate via baro above home if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND_APPROACH || flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND_PREFLARE || flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND_FINAL) { // ensure the rangefinder is powered-on when land alt is higher than home altitude. // This is done using the target alt which we know is below us and we are sinking to it height = height_above_target(); } else { // otherwise just use the best available baro estimate above home. height = relative_altitude(); } rangefinder.set_estimated_terrain_height(height); } rangefinder.update(); if (should_log(MASK_LOG_SONAR)) Log_Write_Sonar(); rangefinder_height_update(); } /* calibrate compass */ void Plane::compass_cal_update() { if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } } /* Accel calibration */ void Plane::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); float trim_roll, trim_pitch; if(ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } } /* ask airspeed sensor for a new value */ void Plane::read_airspeed(void) { if (airspeed.enabled()) { airspeed.read(); if (should_log(MASK_LOG_IMU)) { Log_Write_Airspeed(); } calc_airspeed_errors(); // supply a new temperature to the barometer from the digital // airspeed sensor if we can float temperature; if (airspeed.get_temperature(temperature)) { barometer.set_external_temperature(temperature); } } // update smoothed airspeed estimate float aspeed; if (ahrs.airspeed_estimate(&aspeed)) { smoothed_airspeed = smoothed_airspeed * 0.8f + aspeed * 0.2f; } } void Plane::zero_airspeed(bool in_startup) { airspeed.calibrate(in_startup); read_airspeed(); // update barometric calibration with new airspeed supplied temperature barometer.update_calibration(); gcs_send_text(MAV_SEVERITY_INFO,"Airspeed calibration started"); } // read_battery - reads battery voltage and current and invokes failsafe // should be called at 10hz void Plane::read_battery(void) { battery.read(); compass.set_current(battery.current_amps()); if (!usb_connected && hal.util->get_soft_armed() && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) { low_battery_event(); } if (should_log(MASK_LOG_CURRENT)) { Log_Write_Current(); } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void Plane::read_receiver_rssi(void) { receiver_rssi = rssi.read_receiver_rssi_uint8(); } /* update RPM sensors */ void Plane::rpm_update(void) { rpm_sensor.update(); if (rpm_sensor.healthy(0) || rpm_sensor.healthy(1)) { if (should_log(MASK_LOG_RC)) { DataFlash.Log_Write_RPM(rpm_sensor); } } } /* update AP_Button */ void Plane::button_update(void) { g2.button.update(); } /* update AP_ICEngine */ void Plane::ice_update(void) { g2.ice_control.update(); } // update error mask of sensors and subsystems. The mask // uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set // then it indicates that the sensor or subsystem is present but // not functioning correctly. void Plane::update_sensor_status_flags(void) { // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (airspeed.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (geofence_present()) { control_sensors_present |= MAV_SYS_STATUS_GEOFENCE; } if (aparm.throttle_min < 0) { control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR; } if (plane.DataFlash.logging_present()) { // primary logging only (usually File) control_sensors_present |= MAV_SYS_STATUS_LOGGING; } // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING); if (airspeed.enabled() && airspeed.use()) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } if (geofence_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE; } if (plane.DataFlash.logging_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; } switch (control_mode) { case MANUAL: break; case ACRO: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control break; case STABILIZE: case FLY_BY_WIRE_A: case AUTOTUNE: case QSTABILIZE: case QHOVER: case QLAND: case QLOITER: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case FLY_BY_WIRE_B: case CRUISE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case TRAINING: if (!training_manual_roll || !training_manual_pitch) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation } break; case AUTO: case RTL: case LOITER: case AVOID_ADSB: case GUIDED: case CIRCLE: case QRTL: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control break; case INITIALISING: break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } // default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy. control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_3D_MAG | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE); control_sensors_health |= MAV_SYS_STATUS_GEOFENCE; if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) { // trying to use EKF without properly calibrated accelerometers control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (barometer.all_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (airspeed.healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE; } #if GEOFENCE_ENABLED if (geofence_breached()) { control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE; } #endif if (plane.DataFlash.logging_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; } if (millis() - failsafe.last_valid_rc_ms < 200) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } else { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } #if AP_TERRAIN_AVAILABLE switch (terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif if (rangefinder.num_sensors() > 0) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (g.rangefinder_landing) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } if (rangefinder.has_data()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } if (aparm.throttle_min < 0 && channel_throttle->get_servo_out() < 0) { control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR; control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR; } if (AP_Notify::flags.initialising) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } #if FRSKY_TELEM_ENABLED == ENABLED // give mask of error flags to Frsky_Telemetry frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present); #endif }