/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_PX4.cpp - Arduino Library for PX4 magnetometer * */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include "AP_Compass_PX4.h" #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; // Public Methods ////////////////////////////////////////////////////////////// // constructor AP_Compass_PX4::AP_Compass_PX4(Compass &compass): AP_Compass_Backend(compass), _num_sensors(0) { } // detect the sensor AP_Compass_Backend *AP_Compass_PX4::detect(Compass &compass) { AP_Compass_PX4 *sensor = new AP_Compass_PX4(compass); if (sensor == NULL) { return NULL; } if (!sensor->init()) { delete sensor; return NULL; } return sensor; } bool AP_Compass_PX4::init(void) { _mag_fd[0] = open(MAG_BASE_DEVICE_PATH"0", O_RDONLY); _mag_fd[1] = open(MAG_BASE_DEVICE_PATH"1", O_RDONLY); _mag_fd[2] = open(MAG_BASE_DEVICE_PATH"2", O_RDONLY); _num_sensors = 0; for (uint8_t i=0; i= 0) { _num_sensors = i+1; } } if (_num_sensors == 0) { hal.console->printf("Unable to open " MAG_BASE_DEVICE_PATH"0" "\n"); return false; } for (uint8_t i=0; i<_num_sensors; i++) { _instance[i] = register_compass(); // get device id set_dev_id(_instance[i], ioctl(_mag_fd[i], DEVIOCGDEVICEID, 0)); // average over up to 20 samples if (ioctl(_mag_fd[i], SENSORIOCSQUEUEDEPTH, 20) != 0) { hal.console->printf("Failed to setup compass queue\n"); return false; } // remember if the compass is external set_external(_instance[i], ioctl(_mag_fd[i], MAGIOCGEXTERNAL, 0) > 0); _count[i] = 0; _sum[i].zero(); } // give the driver a chance to run, and gather one sample hal.scheduler->delay(40); accumulate(); if (_count[0] == 0) { hal.console->printf("Failed initial compass accumulate\n"); } return true; } void AP_Compass_PX4::read(void) { // try to accumulate one more sample, so we have the latest data accumulate(); for (uint8_t i=0; i<_num_sensors; i++) { uint8_t frontend_instance = _instance[i]; // avoid division by zero if we haven't received any mag reports if (_count[i] == 0) continue; _sum[i] /= _count[i]; publish_filtered_field(_sum[i], frontend_instance); _sum[i].zero(); _count[i] = 0; } } void AP_Compass_PX4::accumulate(void) { struct mag_report mag_report; for (uint8_t i=0; i<_num_sensors; i++) { uint8_t frontend_instance = _instance[i]; while (::read(_mag_fd[i], &mag_report, sizeof(mag_report)) == sizeof(mag_report) && mag_report.timestamp != _last_timestamp[i]) { uint32_t time_us = (uint32_t)mag_report.timestamp; // get raw_field - sensor frame, uncorrected Vector3f raw_field = Vector3f(mag_report.x, mag_report.y, mag_report.z)*1.0e3f; // rotate raw_field from sensor frame to body frame rotate_field(raw_field, frontend_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, time_us, frontend_instance); // correct raw_field for known errors correct_field(raw_field, frontend_instance); // publish raw_field (corrected point sample) for EKF use publish_unfiltered_field(raw_field, time_us, frontend_instance); // accumulate into averaging filter _sum[i] += raw_field; _count[i]++; _last_timestamp[i] = mag_report.timestamp; } } } float AP_Compass_PX4::get_conversion_ratio(void) { return 1.0f; } #endif // CONFIG_HAL_BOARD