/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_IRLock_I2C.cpp * * Based on AP_IRLock_PX4 by MLandes * * See: http://irlock.com/pages/serial-communication-protocol */ #include #include "AP_IRLock_I2C.h" #include extern const AP_HAL::HAL& hal; #define IRLOCK_I2C_ADDRESS 0x54 #define IRLOCK_SYNC 0xAA55AA55 void AP_IRLock_I2C::init() { dev = std::move(hal.i2c_mgr->get_device(1, IRLOCK_I2C_ADDRESS)); if (!dev) { return; } sem = hal.util->new_semaphore(); // read at 50Hz printf("Starting IRLock on I2C\n"); dev->register_periodic_callback(20000, FUNCTOR_BIND_MEMBER(&AP_IRLock_I2C::read_frames, bool)); } /* synchronise with frame start. We expect 0xAA55AA55 at the start of a frame */ bool AP_IRLock_I2C::sync_frame_start(void) { uint32_t sync_word; if (!dev->transfer(nullptr, 0, (uint8_t *)&sync_word, 4)) { return false; } // record sensor successfully responded to I2C request _last_read_ms = AP_HAL::millis(); uint8_t count=40; while (count-- && sync_word != IRLOCK_SYNC && sync_word != 0) { uint8_t sync_byte; if (!dev->transfer(nullptr, 0, &sync_byte, 1)) { return false; } if (sync_byte == 0) { break; } sync_word = (sync_word>>8) | (uint32_t(sync_byte)<<24); } return sync_word == IRLOCK_SYNC; } /* converts IRLOCK pixels to a position on a normal plane 1m in front of the lens based on a characterization of IR-LOCK with the standard lens, focused such that 2.38mm of threads are exposed */ void AP_IRLock_I2C::pixel_to_1M_plane(float pix_x, float pix_y, float &ret_x, float &ret_y) { ret_x = (-0.00293875727162397f*pix_x + 0.470201163459835f)/(4.43013552642296e-6f*((pix_x - 160.0f)*(pix_x - 160.0f)) + 4.79331390531725e-6f*((pix_y - 100.0f)*(pix_y - 100.0f)) - 1.0f); ret_y = (-0.003056843086277f*pix_y + 0.3056843086277f)/(4.43013552642296e-6f*((pix_x - 160.0f)*(pix_x - 160.0f)) + 4.79331390531725e-6f*((pix_y - 100.0f)*(pix_y - 100.0f)) - 1.0f); } /* read a frame from sensor */ bool AP_IRLock_I2C::read_block(struct frame &irframe) { if (!dev->transfer(nullptr, 0, (uint8_t*)&irframe, sizeof(irframe))) { return false; } // record sensor successfully responded to I2C request _last_read_ms = AP_HAL::millis(); /* check crc */ uint32_t crc = irframe.signature + irframe.pixel_x + irframe.pixel_y + irframe.pixel_size_x + irframe.pixel_size_y; if (crc != irframe.checksum) { // printf("bad crc 0x%04x 0x%04x\n", crc, irframe.checksum); return false; } return true; } bool AP_IRLock_I2C::read_frames(void) { if (!sync_frame_start()) { return true; } struct frame irframe; if (!read_block(irframe)) { return true; } int16_t corner1_pix_x = irframe.pixel_x - irframe.pixel_size_x/2; int16_t corner1_pix_y = irframe.pixel_y - irframe.pixel_size_y/2; int16_t corner2_pix_x = irframe.pixel_x + irframe.pixel_size_x/2; int16_t corner2_pix_y = irframe.pixel_y + irframe.pixel_size_y/2; float corner1_pos_x, corner1_pos_y, corner2_pos_x, corner2_pos_y; pixel_to_1M_plane(corner1_pix_x, corner1_pix_y, corner1_pos_x, corner1_pos_y); pixel_to_1M_plane(corner2_pix_x, corner2_pix_y, corner2_pos_x, corner2_pos_y); if (sem->take(0)) { /* convert to angles */ _target_info.timestamp = AP_HAL::millis(); _target_info.pos_x = 0.5f*(corner1_pos_x+corner2_pos_x); _target_info.pos_y = 0.5f*(corner1_pos_y+corner2_pos_y); _target_info.size_x = corner2_pos_x-corner1_pos_x; _target_info.size_y = corner2_pos_y-corner1_pos_y; sem->give(); } #if 0 // debugging static uint32_t lastt; if (_target_info.timestamp - lastt > 2000) { lastt = _target_info.timestamp; printf("pos_x:%.5f pos_y:%.5f size_x:%.6f size_y:%.5f\n", _target_info.pos_x, _target_info.pos_y, _target_info.size_x, _target_info.size_y); } #endif return true; } // retrieve latest sensor data - returns true if new data is available bool AP_IRLock_I2C::update() { bool new_data = false; if (!dev || !sem) { return false; } if (sem->take(0)) { if (_last_update_ms != _target_info.timestamp) { new_data = true; } _last_update_ms = _target_info.timestamp; _flags.healthy = (AP_HAL::millis() - _last_read_ms < 100); sem->give(); } // return true if new data found return new_data; }