// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Motors.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include "AP_Motors_Class.h" #include extern const AP_HAL::HAL& hal; // Constructor AP_Motors::AP_Motors(uint16_t loop_rate, uint16_t speed_hz) : _loop_rate(loop_rate), _speed_hz(speed_hz), _roll_in(0.0f), _pitch_in(0.0f), _yaw_in(0.0f), _throttle_in(0.0f), _throttle_filter(), _batt_voltage(0.0f), _batt_current(0.0f), _air_density_ratio(1.0f), _motor_map_mask(0) { // init other flags _flags.armed = false; _flags.frame_orientation = AP_MOTORS_X_FRAME; _flags.interlock = false; // setup throttle filtering _throttle_filter.set_cutoff_frequency(0.0f); _throttle_filter.reset(0.0f); // init limit flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; }; void AP_Motors::armed(bool arm) { _flags.armed = arm; AP_Notify::flags.armed = arm; }; // pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle void AP_Motors::set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input) { _roll_radio_passthrough = roll_input; _pitch_radio_passthrough = pitch_input; _throttle_radio_passthrough = throttle_input; _yaw_radio_passthrough = yaw_input; } /* write to an output channel */ void AP_Motors::rc_write(uint8_t chan, uint16_t pwm) { if (_motor_map_mask & (1U< 250) { pwm = 250; } } hal.rcout->write(chan, pwm); } /* set frequency of a set of channels */ void AP_Motors::rc_set_freq(uint32_t mask, uint16_t freq_hz) { mask = rc_map_mask(mask); if (freq_hz > 50) { _motor_fast_mask |= mask; } hal.rcout->set_freq(mask, freq_hz); if ((_pwm_type == PWM_TYPE_ONESHOT || _pwm_type == PWM_TYPE_ONESHOT125) && freq_hz > 50) { // tell HAL to do immediate output hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_ONESHOT); } } void AP_Motors::rc_enable_ch(uint8_t chan) { if (_motor_map_mask & (1U<enable_ch(chan); } /* map an internal motor mask to real motor mask */ uint32_t AP_Motors::rc_map_mask(uint32_t mask) const { uint32_t mask2 = 0; for (uint8_t i=0; i<32; i++) { uint32_t bit = 1UL<= 0.0f) { ret = ((input * (servo.radio_max - servo.radio_trim)) + servo.radio_trim); } else { ret = ((input * (servo.radio_trim - servo.radio_min)) + servo.radio_trim); } return constrain_int16(ret, servo.radio_min, servo.radio_max); } // convert input in 0 to +1 range to pwm output int16_t AP_Motors::calc_pwm_output_0to1(float input, const RC_Channel& servo) { int16_t ret; input = constrain_float(input, 0.0f, 1.0f); if (servo.get_reverse()) { input = 1.0f-input; } ret = input * (servo.radio_max - servo.radio_min) + servo.radio_min; return constrain_int16(ret, servo.radio_min, servo.radio_max); } /* add a motor, setting up _motor_map and _motor_map_mask as needed */ void AP_Motors::add_motor_num(int8_t motor_num) { // ensure valid motor number is provided if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { uint8_t chan; if (RC_Channel_aux::find_channel((RC_Channel_aux::Aux_servo_function_t)(RC_Channel_aux::k_motor1+motor_num), chan)) { _motor_map[motor_num] = chan; _motor_map_mask |= 1U<