/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include "DataFlash.h" #include #include #include #include #include #include #include #include "DataFlash_SITL.h" #include "DataFlash_File.h" #include "DataFlash_Empty.h" #include "DataFlash_APM1.h" #include "DataFlash_APM2.h" #include "DFMessageWriter.h" extern const AP_HAL::HAL& hal; void DataFlash_Class::Init(const struct LogStructure *structure, uint8_t num_types) { _num_types = num_types; _structures = structure; // DataFlash #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 backend = new DataFlash_APM1(*this); #elif CONFIG_HAL_BOARD == HAL_BOARD_APM2 backend = new DataFlash_APM2(*this); #elif defined(HAL_BOARD_LOG_DIRECTORY) backend = new DataFlash_File(*this, HAL_BOARD_LOG_DIRECTORY); #else // no dataflash driver backend = new DataFlash_Empty(*this); #endif if (backend == NULL) { hal.scheduler->panic(PSTR("Unable to open dataflash")); } backend->Init(structure, num_types); } // This function determines the number of whole or partial log files in the DataFlash // Wholly overwritten files are (of course) lost. uint16_t DataFlash_Block::get_num_logs(void) { uint16_t lastpage; uint16_t last; uint16_t first; if (find_last_page() == 1) { return 0; } StartRead(1); if (GetFileNumber() == 0xFFFF) { return 0; } lastpage = find_last_page(); StartRead(lastpage); last = GetFileNumber(); StartRead(lastpage + 2); first = GetFileNumber(); if(first > last) { StartRead(1); first = GetFileNumber(); } if (last == first) { return 1; } return (last - first + 1); } // This function starts a new log file in the DataFlash uint16_t DataFlash_Block::start_new_log(void) { uint16_t last_page = find_last_page(); StartRead(last_page); //Serial.print("last page: "); Serial.println(last_page); //Serial.print("file #: "); Serial.println(GetFileNumber()); //Serial.print("file page: "); Serial.println(GetFilePage()); if(find_last_log() == 0 || GetFileNumber() == 0xFFFF) { SetFileNumber(1); StartWrite(1); //Serial.println("start log from 0"); log_write_started = true; return 1; } uint16_t new_log_num; // Check for log of length 1 page and suppress if(GetFilePage() <= 1) { new_log_num = GetFileNumber(); // Last log too short, reuse its number // and overwrite it SetFileNumber(new_log_num); StartWrite(last_page); } else { new_log_num = GetFileNumber()+1; if (last_page == 0xFFFF) { last_page=0; } SetFileNumber(new_log_num); StartWrite(last_page + 1); } log_write_started = true; return new_log_num; } // This function finds the first and last pages of a log file // The first page may be greater than the last page if the DataFlash has been filled and partially overwritten. void DataFlash_Block::get_log_boundaries(uint16_t log_num, uint16_t & start_page, uint16_t & end_page) { uint16_t num = get_num_logs(); uint16_t look; if (df_BufferIdx != 0) { FinishWrite(); hal.scheduler->delay(100); } if(num == 1) { StartRead(df_NumPages); if (GetFileNumber() == 0xFFFF) { start_page = 1; end_page = find_last_page_of_log((uint16_t)log_num); } else { end_page = find_last_page_of_log((uint16_t)log_num); start_page = end_page + 1; } } else { if(log_num==1) { StartRead(df_NumPages); if(GetFileNumber() == 0xFFFF) { start_page = 1; } else { start_page = find_last_page() + 1; } } else { if(log_num == find_last_log() - num + 1) { start_page = find_last_page() + 1; } else { look = log_num-1; do { start_page = find_last_page_of_log(look) + 1; look--; } while (start_page <= 0 && look >=1); } } } if (start_page == df_NumPages+1 || start_page == 0) { start_page = 1; } end_page = find_last_page_of_log(log_num); if (end_page == 0) { end_page = start_page; } } // find log size and time void DataFlash_Block::get_log_info(uint16_t log_num, uint32_t &size, uint32_t &time_utc) { uint16_t start, end; get_log_boundaries(log_num, start, end); if (end >= start) { size = (end + 1 - start) * (uint32_t)df_PageSize; } else { size = (df_NumPages + end - start) * (uint32_t)df_PageSize; } time_utc = 0; } bool DataFlash_Block::check_wrapped(void) { StartRead(df_NumPages); if(GetFileNumber() == 0xFFFF) return 0; else return 1; } // This funciton finds the last log number uint16_t DataFlash_Block::find_last_log(void) { uint16_t last_page = find_last_page(); StartRead(last_page); return GetFileNumber(); } // This function finds the last page of the last file uint16_t DataFlash_Block::find_last_page(void) { uint16_t look; uint16_t bottom = 1; uint16_t top = df_NumPages; uint32_t look_hash; uint32_t bottom_hash; uint32_t top_hash; StartRead(bottom); bottom_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage(); while(top-bottom > 1) { look = (top+bottom)/2; StartRead(look); look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage(); if (look_hash >= 0xFFFF0000) look_hash = 0; if(look_hash < bottom_hash) { // move down top = look; } else { // move up bottom = look; bottom_hash = look_hash; } } StartRead(top); top_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage(); if (top_hash >= 0xFFFF0000) { top_hash = 0; } if (top_hash > bottom_hash) { return top; } return bottom; } // This function finds the last page of a particular log file uint16_t DataFlash_Block::find_last_page_of_log(uint16_t log_number) { uint16_t look; uint16_t bottom; uint16_t top; uint32_t look_hash; uint32_t check_hash; if(check_wrapped()) { StartRead(1); bottom = GetFileNumber(); if (bottom > log_number) { bottom = find_last_page(); top = df_NumPages; } else { bottom = 1; top = find_last_page(); } } else { bottom = 1; top = find_last_page(); } check_hash = (int32_t)log_number<<16 | 0xFFFF; while(top-bottom > 1) { look = (top+bottom)/2; StartRead(look); look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage(); if (look_hash >= 0xFFFF0000) look_hash = 0; if(look_hash > check_hash) { // move down top = look; } else { // move up bottom = look; } } StartRead(top); if (GetFileNumber() == log_number) return top; StartRead(bottom); if (GetFileNumber() == log_number) return bottom; return -1; } #define PGM_UINT8(addr) pgm_read_byte((const prog_char *)addr) #ifndef DATAFLASH_NO_CLI /* read and print a log entry using the format strings from the given structure - this really should in in the frontend, not the backend */ void DataFlash_Backend::_print_log_entry(uint8_t msg_type, print_mode_fn print_mode, AP_HAL::BetterStream *port) { uint8_t i; for (i=0; i<_num_types; i++) { if (msg_type == PGM_UINT8(&_structures[i].msg_type)) { break; } } if (i == _num_types) { port->printf_P(PSTR("UNKN, %u\n"), (unsigned)msg_type); return; } uint8_t msg_len = PGM_UINT8(&_structures[i].msg_len) - 3; uint8_t pkt[msg_len]; if (!ReadBlock(pkt, msg_len)) { return; } port->printf_P(PSTR("%S, "), _structures[i].name); for (uint8_t ofs=0, fmt_ofs=0; ofsprintf_P(PSTR("%d"), (int)pkt[ofs]); ofs += 1; break; } case 'B': { port->printf_P(PSTR("%u"), (unsigned)pkt[ofs]); ofs += 1; break; } case 'h': { int16_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%d"), (int)v); ofs += sizeof(v); break; } case 'H': { uint16_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%u"), (unsigned)v); ofs += sizeof(v); break; } case 'i': { int32_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%ld"), (long)v); ofs += sizeof(v); break; } case 'I': { uint32_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%lu"), (unsigned long)v); ofs += sizeof(v); break; } case 'q': { int64_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%lld"), (long long)v); ofs += sizeof(v); break; } case 'Q': { uint64_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%llu"), (unsigned long long)v); ofs += sizeof(v); break; } case 'f': { float v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%f"), (double)v); ofs += sizeof(v); break; } case 'd': { double v; memcpy(&v, &pkt[ofs], sizeof(v)); // note that %f here *really* means a single-precision // float, so we lose precision printing this double out // dtoa_engine needed.... port->printf_P(PSTR("%f"), (double)v); ofs += sizeof(v); break; } case 'c': { int16_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%.2f"), (double)(0.01f*v)); ofs += sizeof(v); break; } case 'C': { uint16_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%.2f"), (double)(0.01f*v)); ofs += sizeof(v); break; } case 'e': { int32_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%.2f"), (double)(0.01f*v)); ofs += sizeof(v); break; } case 'E': { uint32_t v; memcpy(&v, &pkt[ofs], sizeof(v)); port->printf_P(PSTR("%.2f"), (double)(0.01f*v)); ofs += sizeof(v); break; } case 'L': { int32_t v; memcpy(&v, &pkt[ofs], sizeof(v)); print_latlon(port, v); ofs += sizeof(v); break; } case 'n': { char v[5]; memcpy(&v, &pkt[ofs], sizeof(v)); v[sizeof(v)-1] = 0; port->printf_P(PSTR("%s"), v); ofs += sizeof(v)-1; break; } case 'N': { char v[17]; memcpy(&v, &pkt[ofs], sizeof(v)); v[sizeof(v)-1] = 0; port->printf_P(PSTR("%s"), v); ofs += sizeof(v)-1; break; } case 'Z': { char v[65]; memcpy(&v, &pkt[ofs], sizeof(v)); v[sizeof(v)-1] = 0; port->printf_P(PSTR("%s"), v); ofs += sizeof(v)-1; break; } case 'M': { print_mode(port, pkt[ofs]); ofs += 1; break; } default: ofs = msg_len; break; } if (ofs < msg_len) { port->printf_P(PSTR(", ")); } } port->println(); } /* print FMT specifiers for log dumps where we have wrapped in the dataflash and so have no formats. This assumes the log being dumped using the same log formats as the current formats, but it is better than falling back to old defaults in the GCS */ void DataFlash_Block::_print_log_formats(AP_HAL::BetterStream *port) { for (uint8_t i=0; i<_num_types; i++) { const struct LogStructure *s = &_structures[i]; port->printf_P(PSTR("FMT, %u, %u, %S, %S, %S\n"), (unsigned)PGM_UINT8(&s->msg_type), (unsigned)PGM_UINT8(&s->msg_len), s->name, s->format, s->labels); } } /* Read the log and print it on port */ void DataFlash_Block::LogReadProcess(uint16_t log_num, uint16_t start_page, uint16_t end_page, print_mode_fn print_mode, AP_HAL::BetterStream *port) { uint8_t log_step = 0; uint16_t page = start_page; bool first_entry = true; if (df_BufferIdx != 0) { FinishWrite(); hal.scheduler->delay(100); } StartRead(start_page); while (true) { uint8_t data; if (!ReadBlock(&data, 1)) { break; } // This is a state machine to read the packets switch(log_step) { case 0: if (data == HEAD_BYTE1) { log_step++; } break; case 1: if (data == HEAD_BYTE2) { log_step++; } else { log_step = 0; } break; case 2: log_step = 0; if (first_entry && data != LOG_FORMAT_MSG) { _print_log_formats(port); } first_entry = false; _print_log_entry(data, print_mode, port); break; } uint16_t new_page = GetPage(); if (new_page != page) { if (new_page == end_page+1 || new_page == start_page) { return; } page = new_page; } } } /* dump header information from all log pages */ void DataFlash_Block::DumpPageInfo(AP_HAL::BetterStream *port) { for (uint16_t count=1; count<=df_NumPages; count++) { StartRead(count); port->printf_P(PSTR("DF page, log file #, log page: %u,\t"), (unsigned)count); port->printf_P(PSTR("%u,\t"), (unsigned)GetFileNumber()); port->printf_P(PSTR("%u\n"), (unsigned)GetFilePage()); } } /* show information about the device */ void DataFlash_Block::ShowDeviceInfo(AP_HAL::BetterStream *port) { if (!CardInserted()) { port->println_P(PSTR("No dataflash inserted")); return; } ReadManufacturerID(); port->printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"), (unsigned)df_manufacturer, (unsigned)df_device); port->printf_P(PSTR("NumPages: %u PageSize: %u\n"), (unsigned)df_NumPages+1, (unsigned)df_PageSize); } /* list available log numbers */ void DataFlash_Block::ListAvailableLogs(AP_HAL::BetterStream *port) { uint16_t num_logs = get_num_logs(); int16_t last_log_num = find_last_log(); uint16_t log_start = 0; uint16_t log_end = 0; if (num_logs == 0) { port->printf_P(PSTR("\nNo logs\n\n")); return; } port->printf_P(PSTR("\n%u logs\n"), (unsigned)num_logs); for (uint16_t i=num_logs; i>=1; i--) { uint16_t last_log_start = log_start, last_log_end = log_end; uint16_t temp = last_log_num - i + 1; get_log_boundaries(temp, log_start, log_end); port->printf_P(PSTR("Log %u, start %u, end %u\n"), (unsigned)temp, (unsigned)log_start, (unsigned)log_end); if (last_log_start == log_start && last_log_end == log_end) { // we are printing bogus logs break; } } port->println(); } #endif // DATAFLASH_NO_CLI // This function starts a new log file in the DataFlash, and writes // the format of supported messages in the log uint16_t DataFlash_Class::StartNewLog(void) { uint16_t ret; ret = start_new_log(); if (ret == 0xFFFF) { // don't write out formats if we fail to open the log return ret; } _startup_messagewriter.reset(); return ret; } // add new logging formats to the log. Used by libraries that want to // add their own log messages void DataFlash_Class::AddLogFormats(const struct LogStructure *structures, uint8_t num_types) { // write new log formats for (uint8_t i=0; imsg_type); pkt.length = PGM_UINT8(&s->msg_len); strncpy_P(pkt.name, s->name, sizeof(pkt.name)); strncpy_P(pkt.format, s->format, sizeof(pkt.format)); strncpy_P(pkt.labels, s->labels, sizeof(pkt.labels)); } /* write a structure format to the log */ bool DataFlash_Class::Log_Write_Format(const struct LogStructure *s) { struct log_Format pkt; Log_Fill_Format(s, pkt); return WriteCriticalBlock(&pkt, sizeof(pkt)); } /* write a parameter to the log */ bool DataFlash_Class::Log_Write_Parameter(const char *name, float value) { struct log_Parameter pkt = { LOG_PACKET_HEADER_INIT(LOG_PARAMETER_MSG), time_us : hal.scheduler->micros64(), name : {}, value : value }; strncpy(pkt.name, name, sizeof(pkt.name)); return WriteCriticalBlock(&pkt, sizeof(pkt)); } /* write a parameter to the log */ bool DataFlash_Class::Log_Write_Parameter(const AP_Param *ap, const AP_Param::ParamToken &token, enum ap_var_type type) { char name[16]; ap->copy_name_token(token, &name[0], sizeof(name), true); return Log_Write_Parameter(name, ap->cast_to_float(type)); } /* write all parameters to the log - used when starting a new log so the log file has a full record of the parameters */ void DataFlash_Class::Log_Write_Parameters(void) { AP_Param::ParamToken token; AP_Param *ap; enum ap_var_type type; for (ap=AP_Param::first(&token, &type); ap; ap=AP_Param::next_scalar(&token, &type)) { Log_Write_Parameter(ap, token, type); // slow down the parameter dump to prevent saturating // the dataflash write bandwidth hal.scheduler->delay(1); } } // Write an GPS packet void DataFlash_Class::Log_Write_GPS(const AP_GPS &gps, uint8_t i, int32_t relative_alt) { const struct Location &loc = gps.location(i); struct log_GPS pkt = { LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPS_MSG+i)), time_us : hal.scheduler->micros64(), status : (uint8_t)gps.status(i), gps_week_ms : gps.time_week_ms(i), gps_week : gps.time_week(i), num_sats : gps.num_sats(i), hdop : gps.get_hdop(i), latitude : loc.lat, longitude : loc.lng, rel_altitude : relative_alt, altitude : loc.alt, ground_speed : (uint32_t)(gps.ground_speed(i) * 100), ground_course : gps.ground_course_cd(i), vel_z : gps.velocity(i).z, used : (uint8_t)(gps.primary_sensor() == i) }; WriteBlock(&pkt, sizeof(pkt)); /* write auxillary accuracy information as well */ float hacc = 0, vacc = 0, sacc = 0; gps.horizontal_accuracy(i, hacc); gps.vertical_accuracy(i, vacc); gps.speed_accuracy(i, sacc); struct log_GPA pkt2 = { LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPA_MSG+i)), time_us : hal.scheduler->micros64(), vdop : gps.get_vdop(i), hacc : (uint16_t)(hacc*100), vacc : (uint16_t)(vacc*100), sacc : (uint16_t)(sacc*100) }; WriteBlock(&pkt2, sizeof(pkt2)); } // Write an RFND (rangefinder) packet void DataFlash_Class::Log_Write_RFND(const RangeFinder &rangefinder) { struct log_RFND pkt = { LOG_PACKET_HEADER_INIT((uint8_t)(LOG_RFND_MSG)), time_us : hal.scheduler->micros64(), dist1 : rangefinder.distance_cm(0), dist2 : rangefinder.distance_cm(1) }; WriteBlock(&pkt, sizeof(pkt)); } // Write an RCIN packet void DataFlash_Class::Log_Write_RCIN(void) { struct log_RCIN pkt = { LOG_PACKET_HEADER_INIT(LOG_RCIN_MSG), time_us : hal.scheduler->micros64(), chan1 : hal.rcin->read(0), chan2 : hal.rcin->read(1), chan3 : hal.rcin->read(2), chan4 : hal.rcin->read(3), chan5 : hal.rcin->read(4), chan6 : hal.rcin->read(5), chan7 : hal.rcin->read(6), chan8 : hal.rcin->read(7), chan9 : hal.rcin->read(8), chan10 : hal.rcin->read(9), chan11 : hal.rcin->read(10), chan12 : hal.rcin->read(11), chan13 : hal.rcin->read(12), chan14 : hal.rcin->read(13) }; WriteBlock(&pkt, sizeof(pkt)); } // Write an SERVO packet void DataFlash_Class::Log_Write_RCOUT(void) { struct log_RCOUT pkt = { LOG_PACKET_HEADER_INIT(LOG_RCOUT_MSG), time_us : hal.scheduler->micros64(), chan1 : hal.rcout->read(0), chan2 : hal.rcout->read(1), chan3 : hal.rcout->read(2), chan4 : hal.rcout->read(3), chan5 : hal.rcout->read(4), chan6 : hal.rcout->read(5), chan7 : hal.rcout->read(6), chan8 : hal.rcout->read(7), chan9 : hal.rcout->read(8), chan10 : hal.rcout->read(9), chan11 : hal.rcout->read(10), chan12 : hal.rcout->read(11) }; WriteBlock(&pkt, sizeof(pkt)); Log_Write_ESC(); } // Write an RSSI packet void DataFlash_Class::Log_Write_RSSI(AP_RSSI &rssi) { struct log_RSSI pkt = { LOG_PACKET_HEADER_INIT(LOG_RSSI_MSG), time_us : hal.scheduler->micros64(), RXRSSI : rssi.read_receiver_rssi() }; WriteBlock(&pkt, sizeof(pkt)); } // Write a BARO packet void DataFlash_Class::Log_Write_Baro(AP_Baro &baro) { uint64_t time_us = hal.scheduler->micros64(); struct log_BARO pkt = { LOG_PACKET_HEADER_INIT(LOG_BARO_MSG), time_us : time_us, altitude : baro.get_altitude(0), pressure : baro.get_pressure(0), temperature : (int16_t)(baro.get_temperature(0) * 100), climbrate : baro.get_climb_rate() }; WriteBlock(&pkt, sizeof(pkt)); #if BARO_MAX_INSTANCES > 1 if (baro.num_instances() > 1 && baro.healthy(1)) { struct log_BARO pkt2 = { LOG_PACKET_HEADER_INIT(LOG_BAR2_MSG), time_us : time_us, altitude : baro.get_altitude(1), pressure : baro.get_pressure(1), temperature : (int16_t)(baro.get_temperature(1) * 100), climbrate : baro.get_climb_rate() }; WriteBlock(&pkt2, sizeof(pkt2)); } #endif #if BARO_MAX_INSTANCES > 2 if (baro.num_instances() > 2 && baro.healthy(2)) { struct log_BARO pkt3 = { LOG_PACKET_HEADER_INIT(LOG_BAR3_MSG), time_us : time_us, altitude : baro.get_altitude(2), pressure : baro.get_pressure(2), temperature : (int16_t)(baro.get_temperature(2) * 100), climbrate : baro.get_climb_rate() }; WriteBlock(&pkt3, sizeof(pkt3)); } #endif } // Write an raw accel/gyro data packet void DataFlash_Class::Log_Write_IMU(const AP_InertialSensor &ins) { uint64_t time_us = hal.scheduler->micros64(); const Vector3f &gyro = ins.get_gyro(0); const Vector3f &accel = ins.get_accel(0); struct log_IMU pkt = { LOG_PACKET_HEADER_INIT(LOG_IMU_MSG), time_us : time_us, gyro_x : gyro.x, gyro_y : gyro.y, gyro_z : gyro.z, accel_x : accel.x, accel_y : accel.y, accel_z : accel.z, gyro_error : ins.get_gyro_error_count(0), accel_error : ins.get_accel_error_count(0), temperature : ins.get_temperature(0), gyro_health : (uint8_t)ins.get_gyro_health(0), accel_health : (uint8_t)ins.get_accel_health(0) }; WriteBlock(&pkt, sizeof(pkt)); if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) { return; } #if INS_MAX_INSTANCES > 1 const Vector3f &gyro2 = ins.get_gyro(1); const Vector3f &accel2 = ins.get_accel(1); struct log_IMU pkt2 = { LOG_PACKET_HEADER_INIT(LOG_IMU2_MSG), time_us : time_us, gyro_x : gyro2.x, gyro_y : gyro2.y, gyro_z : gyro2.z, accel_x : accel2.x, accel_y : accel2.y, accel_z : accel2.z, gyro_error : ins.get_gyro_error_count(1), accel_error : ins.get_accel_error_count(1), temperature : ins.get_temperature(1), gyro_health : (uint8_t)ins.get_gyro_health(1), accel_health : (uint8_t)ins.get_accel_health(1) }; WriteBlock(&pkt2, sizeof(pkt2)); if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) { return; } const Vector3f &gyro3 = ins.get_gyro(2); const Vector3f &accel3 = ins.get_accel(2); struct log_IMU pkt3 = { LOG_PACKET_HEADER_INIT(LOG_IMU3_MSG), time_us : time_us, gyro_x : gyro3.x, gyro_y : gyro3.y, gyro_z : gyro3.z, accel_x : accel3.x, accel_y : accel3.y, accel_z : accel3.z, gyro_error : ins.get_gyro_error_count(2), accel_error : ins.get_accel_error_count(2), temperature : ins.get_temperature(2), gyro_health : (uint8_t)ins.get_gyro_health(2), accel_health : (uint8_t)ins.get_accel_health(2) }; WriteBlock(&pkt3, sizeof(pkt3)); #endif } // Write an accel/gyro delta time data packet void DataFlash_Class::Log_Write_IMUDT(const AP_InertialSensor &ins) { float delta_t = ins.get_delta_time(); float delta_vel_t = ins.get_delta_velocity_dt(0); Vector3f delta_angle, delta_velocity; ins.get_delta_angle(0, delta_angle); ins.get_delta_velocity(0, delta_velocity); uint64_t time_us = hal.scheduler->micros64(); struct log_IMUDT pkt = { LOG_PACKET_HEADER_INIT(LOG_IMUDT_MSG), time_us : time_us, delta_time : delta_t, delta_vel_dt : delta_vel_t, delta_ang_x : delta_angle.x, delta_ang_y : delta_angle.y, delta_ang_z : delta_angle.z, delta_vel_x : delta_velocity.x, delta_vel_y : delta_velocity.y, delta_vel_z : delta_velocity.z }; WriteBlock(&pkt, sizeof(pkt)); if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) { return; } #if INS_MAX_INSTANCES > 1 delta_vel_t = ins.get_delta_velocity_dt(1); if (!ins.get_delta_angle(1, delta_angle)) { delta_angle.zero(); } if (!ins.get_delta_velocity(1, delta_velocity)) { delta_velocity.zero(); } struct log_IMUDT pkt2 = { LOG_PACKET_HEADER_INIT(LOG_IMUDT2_MSG), time_us : time_us, delta_time : delta_t, delta_vel_dt : delta_vel_t, delta_ang_x : delta_angle.x, delta_ang_y : delta_angle.y, delta_ang_z : delta_angle.z, delta_vel_x : delta_velocity.x, delta_vel_y : delta_velocity.y, delta_vel_z : delta_velocity.z }; WriteBlock(&pkt2, sizeof(pkt2)); if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) { return; } delta_vel_t = ins.get_delta_velocity_dt(1); if (!ins.get_delta_angle(2, delta_angle)) { delta_angle.zero(); } if (!ins.get_delta_velocity(2, delta_velocity)) { delta_velocity.zero(); } struct log_IMUDT pkt3 = { LOG_PACKET_HEADER_INIT(LOG_IMUDT3_MSG), time_us : time_us, delta_time : delta_t, delta_vel_dt : delta_vel_t, delta_ang_x : delta_angle.x, delta_ang_y : delta_angle.y, delta_ang_z : delta_angle.z, delta_vel_x : delta_velocity.x, delta_vel_y : delta_velocity.y, delta_vel_z : delta_velocity.z }; WriteBlock(&pkt3, sizeof(pkt3)); #endif } void DataFlash_Class::Log_Write_Vibration(const AP_InertialSensor &ins) { #if INS_VIBRATION_CHECK uint64_t time_us = hal.scheduler->micros64(); Vector3f vibration = ins.get_vibration_levels(); struct log_Vibe pkt = { LOG_PACKET_HEADER_INIT(LOG_VIBE_MSG), time_us : time_us, vibe_x : vibration.x, vibe_y : vibration.y, vibe_z : vibration.z, clipping_0 : ins.get_accel_clip_count(0), clipping_1 : ins.get_accel_clip_count(1), clipping_2 : ins.get_accel_clip_count(2) }; WriteBlock(&pkt, sizeof(pkt)); #endif } void DataFlash_Class::Log_Write_SysInfo(const prog_char_t *firmware_string) { Log_Write_Message_P(firmware_string); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) Log_Write_Message_P(PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION)); #endif // write system identifier as well if available char sysid[40]; if (hal.util->get_system_id(sysid)) { Log_Write_Message(sysid); } // Write all current parameters Log_Write_Parameters(); } // Write a mission command. Total length : 36 bytes bool DataFlash_Class::Log_Write_Mission_Cmd(const AP_Mission &mission, const AP_Mission::Mission_Command &cmd) { mavlink_mission_item_t mav_cmd = {}; AP_Mission::mission_cmd_to_mavlink(cmd,mav_cmd); return Log_Write_MavCmd(mission.num_commands(),mav_cmd); } void DataFlash_Class::Log_Write_EntireMission(const AP_Mission &mission) { DFMessageWriter_WriteEntireMission writer(*this); writer.set_mission(&mission); writer.process(); } // Write a text message to the log bool DataFlash_Class::Log_Write_Message(const char *message) { struct log_Message pkt = { LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG), time_us : hal.scheduler->micros64(), msg : {} }; strncpy(pkt.msg, message, sizeof(pkt.msg)); return WriteCriticalBlock(&pkt, sizeof(pkt)); } // Write a text message to the log bool DataFlash_Class::Log_Write_Message_P(const prog_char_t *message) { struct log_Message pkt = { LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG), time_us : hal.scheduler->micros64(), msg : {} }; strncpy_P(pkt.msg, message, sizeof(pkt.msg)); return WriteCriticalBlock(&pkt, sizeof(pkt)); } // Write a POWR packet void DataFlash_Class::Log_Write_Power(void) { #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 struct log_POWR pkt = { LOG_PACKET_HEADER_INIT(LOG_POWR_MSG), time_us : hal.scheduler->micros64(), Vcc : (uint16_t)(hal.analogin->board_voltage() * 100), Vservo : (uint16_t)(hal.analogin->servorail_voltage() * 100), flags : hal.analogin->power_status_flags() }; WriteBlock(&pkt, sizeof(pkt)); #endif } // Write an AHRS2 packet void DataFlash_Class::Log_Write_AHRS2(AP_AHRS &ahrs) { Vector3f euler; struct Location loc; if (!ahrs.get_secondary_attitude(euler) || !ahrs.get_secondary_position(loc)) { return; } struct log_AHRS pkt = { LOG_PACKET_HEADER_INIT(LOG_AHR2_MSG), time_us : hal.scheduler->micros64(), roll : (int16_t)(degrees(euler.x)*100), pitch : (int16_t)(degrees(euler.y)*100), yaw : (uint16_t)(wrap_360_cd(degrees(euler.z)*100)), alt : loc.alt*1.0e-2f, lat : loc.lat, lng : loc.lng }; WriteBlock(&pkt, sizeof(pkt)); } // Write a POS packet void DataFlash_Class::Log_Write_POS(AP_AHRS &ahrs) { Location loc; if (!ahrs.get_position(loc)) { return; } Vector3f pos; ahrs.get_relative_position_NED(pos); struct log_POS pkt = { LOG_PACKET_HEADER_INIT(LOG_POS_MSG), time_us : hal.scheduler->micros64(), lat : loc.lat, lng : loc.lng, alt : loc.alt*1.0e-2f, rel_alt : -pos.z }; WriteBlock(&pkt, sizeof(pkt)); } #if AP_AHRS_NAVEKF_AVAILABLE void DataFlash_Class::Log_Write_EKF(AP_AHRS_NavEKF &ahrs, bool optFlowEnabled) { // Write first EKF packet Vector3f euler; Vector3f posNED; Vector3f velNED; Vector3f dAngBias; Vector3f dVelBias; Vector3f gyroBias; ahrs.get_NavEKF().getEulerAngles(euler); ahrs.get_NavEKF().getVelNED(velNED); ahrs.get_NavEKF().getPosNED(posNED); ahrs.get_NavEKF().getGyroBias(gyroBias); struct log_EKF1 pkt = { LOG_PACKET_HEADER_INIT(LOG_EKF1_MSG), time_us : hal.scheduler->micros64(), roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) velN : (float)(velNED.x), // velocity North (m/s) velE : (float)(velNED.y), // velocity East (m/s) velD : (float)(velNED.z), // velocity Down (m/s) posN : (float)(posNED.x), // metres North posE : (float)(posNED.y), // metres East posD : (float)(posNED.z), // metres Down gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string }; WriteBlock(&pkt, sizeof(pkt)); // Write second EKF packet float ratio; float az1bias, az2bias; Vector3f wind; Vector3f magNED; Vector3f magXYZ; ahrs.get_NavEKF().getIMU1Weighting(ratio); ahrs.get_NavEKF().getAccelZBias(az1bias, az2bias); ahrs.get_NavEKF().getWind(wind); ahrs.get_NavEKF().getMagNED(magNED); ahrs.get_NavEKF().getMagXYZ(magXYZ); struct log_EKF2 pkt2 = { LOG_PACKET_HEADER_INIT(LOG_EKF2_MSG), time_us : hal.scheduler->micros64(), Ratio : (int8_t)(100*ratio), AZ1bias : (int8_t)(100*az1bias), AZ2bias : (int8_t)(100*az2bias), windN : (int16_t)(100*wind.x), windE : (int16_t)(100*wind.y), magN : (int16_t)(magNED.x), magE : (int16_t)(magNED.y), magD : (int16_t)(magNED.z), magX : (int16_t)(magXYZ.x), magY : (int16_t)(magXYZ.y), magZ : (int16_t)(magXYZ.z) }; WriteBlock(&pkt2, sizeof(pkt2)); // Write third EKF packet Vector3f velInnov; Vector3f posInnov; Vector3f magInnov; float tasInnov; ahrs.get_NavEKF().getInnovations(velInnov, posInnov, magInnov, tasInnov); struct log_EKF3 pkt3 = { LOG_PACKET_HEADER_INIT(LOG_EKF3_MSG), time_us : hal.scheduler->micros64(), innovVN : (int16_t)(100*velInnov.x), innovVE : (int16_t)(100*velInnov.y), innovVD : (int16_t)(100*velInnov.z), innovPN : (int16_t)(100*posInnov.x), innovPE : (int16_t)(100*posInnov.y), innovPD : (int16_t)(100*posInnov.z), innovMX : (int16_t)(magInnov.x), innovMY : (int16_t)(magInnov.y), innovMZ : (int16_t)(magInnov.z), innovVT : (int16_t)(100*tasInnov) }; WriteBlock(&pkt3, sizeof(pkt3)); // Write fourth EKF packet float velVar; float posVar; float hgtVar; Vector3f magVar; float tasVar; Vector2f offset; uint8_t faultStatus, timeoutStatus; nav_filter_status solutionStatus; nav_gps_status gpsStatus {}; ahrs.get_NavEKF().getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); ahrs.get_NavEKF().getFilterFaults(faultStatus); ahrs.get_NavEKF().getFilterTimeouts(timeoutStatus); ahrs.get_NavEKF().getFilterStatus(solutionStatus); ahrs.get_NavEKF().getFilterGpsStatus(gpsStatus); struct log_EKF4 pkt4 = { LOG_PACKET_HEADER_INIT(LOG_EKF4_MSG), time_us : hal.scheduler->micros64(), sqrtvarV : (int16_t)(100*velVar), sqrtvarP : (int16_t)(100*posVar), sqrtvarH : (int16_t)(100*hgtVar), sqrtvarMX : (int16_t)(100*magVar.x), sqrtvarMY : (int16_t)(100*magVar.y), sqrtvarMZ : (int16_t)(100*magVar.z), sqrtvarVT : (int16_t)(100*tasVar), offsetNorth : (int8_t)(offset.x), offsetEast : (int8_t)(offset.y), faults : (uint8_t)(faultStatus), timeouts : (uint8_t)(timeoutStatus), solution : (uint16_t)(solutionStatus.value), gps : (uint16_t)(gpsStatus.value) }; WriteBlock(&pkt4, sizeof(pkt4)); // Write fifth EKF packet if (optFlowEnabled) { float normInnov; // normalised innovation variance ratio for optical flow observations fused by the main nav filter float gndOffset; // estimated vertical position of the terrain relative to the nav filter zero datum float flowInnovX, flowInnovY; // optical flow LOS rate vector innovations from the main nav filter float auxFlowInnov; // optical flow LOS rate innovation from terrain offset estimator float HAGL; // height above ground level float rngInnov; // range finder innovations float range; // measured range float gndOffsetErr; // filter ground offset state error ahrs.get_NavEKF().getFlowDebug(normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); struct log_EKF5 pkt5 = { LOG_PACKET_HEADER_INIT(LOG_EKF5_MSG), time_us : hal.scheduler->micros64(), normInnov : (uint8_t)(min(100*normInnov,255)), FIX : (int16_t)(1000*flowInnovX), FIY : (int16_t)(1000*flowInnovY), AFI : (int16_t)(1000*auxFlowInnov), HAGL : (int16_t)(100*HAGL), offset : (int16_t)(100*gndOffset), RI : (int16_t)(100*rngInnov), meaRng : (uint16_t)(100*range), errHAGL : (uint16_t)(100*gndOffsetErr) }; WriteBlock(&pkt5, sizeof(pkt5)); } // do EKF2 as well if enabled if (ahrs.get_NavEKF2().enabled()) { Log_Write_EKF2(ahrs, optFlowEnabled); } } void DataFlash_Class::Log_Write_EKF2(AP_AHRS_NavEKF &ahrs, bool optFlowEnabled) { // Write first EKF packet Vector3f euler; Vector3f posNED; Vector3f velNED; Vector3f dAngBias; Vector3f dVelBias; Vector3f gyroBias; ahrs.get_NavEKF2().getEulerAngles(euler); ahrs.get_NavEKF2().getVelNED(velNED); ahrs.get_NavEKF2().getPosNED(posNED); ahrs.get_NavEKF2().getGyroBias(gyroBias); struct log_EKF1 pkt = { LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG), time_us : hal.scheduler->micros64(), roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) velN : (float)(velNED.x), // velocity North (m/s) velE : (float)(velNED.y), // velocity East (m/s) velD : (float)(velNED.z), // velocity Down (m/s) posN : (float)(posNED.x), // metres North posE : (float)(posNED.y), // metres East posD : (float)(posNED.z), // metres Down gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string }; WriteBlock(&pkt, sizeof(pkt)); // Write second EKF packet float azbias = 0; Vector3f wind; Vector3f magNED; Vector3f magXYZ; Vector3f gyroScaleFactor; ahrs.get_NavEKF2().getAccelZBias(azbias); ahrs.get_NavEKF2().getWind(wind); ahrs.get_NavEKF2().getMagNED(magNED); ahrs.get_NavEKF2().getMagXYZ(magXYZ); ahrs.get_NavEKF2().getGyroScaleErrorPercentage(gyroScaleFactor); struct log_NKF2 pkt2 = { LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG), time_us : hal.scheduler->micros64(), AZbias : (int8_t)(100*azbias), scaleX : (int16_t)(100*gyroScaleFactor.x), scaleY : (int16_t)(100*gyroScaleFactor.y), scaleZ : (int16_t)(100*gyroScaleFactor.z), windN : (int16_t)(100*wind.x), windE : (int16_t)(100*wind.y), magN : (int16_t)(magNED.x), magE : (int16_t)(magNED.y), magD : (int16_t)(magNED.z), magX : (int16_t)(magXYZ.x), magY : (int16_t)(magXYZ.y), magZ : (int16_t)(magXYZ.z) }; WriteBlock(&pkt2, sizeof(pkt2)); // Write third EKF packet Vector3f velInnov; Vector3f posInnov; Vector3f magInnov; float tasInnov = 0; float yawInnov = 0; ahrs.get_NavEKF2().getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov); struct log_NKF3 pkt3 = { LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG), time_us : hal.scheduler->micros64(), innovVN : (int16_t)(100*velInnov.x), innovVE : (int16_t)(100*velInnov.y), innovVD : (int16_t)(100*velInnov.z), innovPN : (int16_t)(100*posInnov.x), innovPE : (int16_t)(100*posInnov.y), innovPD : (int16_t)(100*posInnov.z), innovMX : (int16_t)(magInnov.x), innovMY : (int16_t)(magInnov.y), innovMZ : (int16_t)(magInnov.z), innovYaw : (int16_t)(100*degrees(yawInnov)), innovVT : (int16_t)(100*tasInnov) }; WriteBlock(&pkt3, sizeof(pkt3)); // Write fourth EKF packet float velVar = 0; float posVar = 0; float hgtVar = 0; Vector3f magVar; float tasVar = 0; Vector2f offset; uint8_t faultStatus=0, timeoutStatus=0; nav_filter_status solutionStatus {}; nav_gps_status gpsStatus {}; ahrs.get_NavEKF2().getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); ahrs.get_NavEKF2().getFilterFaults(faultStatus); ahrs.get_NavEKF2().getFilterTimeouts(timeoutStatus); ahrs.get_NavEKF2().getFilterStatus(solutionStatus); ahrs.get_NavEKF2().getFilterGpsStatus(gpsStatus); struct log_EKF4 pkt4 = { LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG), time_us : hal.scheduler->micros64(), sqrtvarV : (int16_t)(100*velVar), sqrtvarP : (int16_t)(100*posVar), sqrtvarH : (int16_t)(100*hgtVar), sqrtvarMX : (int16_t)(100*magVar.x), sqrtvarMY : (int16_t)(100*magVar.y), sqrtvarMZ : (int16_t)(100*magVar.z), sqrtvarVT : (int16_t)(100*tasVar), offsetNorth : (int8_t)(offset.x), offsetEast : (int8_t)(offset.y), faults : (uint8_t)(faultStatus), timeouts : (uint8_t)(timeoutStatus), solution : (uint16_t)(solutionStatus.value), gps : (uint16_t)(gpsStatus.value) }; WriteBlock(&pkt4, sizeof(pkt4)); // Write fifth EKF packet if (optFlowEnabled) { float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator float HAGL=0; // height above ground level float rngInnov=0; // range finder innovations float range=0; // measured range float gndOffsetErr=0; // filter ground offset state error ahrs.get_NavEKF2().getFlowDebug(normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); struct log_EKF5 pkt5 = { LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG), time_us : hal.scheduler->micros64(), normInnov : (uint8_t)(min(100*normInnov,255)), FIX : (int16_t)(1000*flowInnovX), FIY : (int16_t)(1000*flowInnovY), AFI : (int16_t)(1000*auxFlowInnov), HAGL : (int16_t)(100*HAGL), offset : (int16_t)(100*gndOffset), RI : (int16_t)(100*rngInnov), meaRng : (uint16_t)(100*range), errHAGL : (uint16_t)(100*gndOffsetErr) }; WriteBlock(&pkt5, sizeof(pkt5)); } } #endif // Write a command processing packet bool DataFlash_Class::Log_Write_MavCmd(uint16_t cmd_total, const mavlink_mission_item_t& mav_cmd) { struct log_Cmd pkt = { LOG_PACKET_HEADER_INIT(LOG_CMD_MSG), time_us : hal.scheduler->micros64(), command_total : (uint16_t)cmd_total, sequence : (uint16_t)mav_cmd.seq, command : (uint16_t)mav_cmd.command, param1 : (float)mav_cmd.param1, param2 : (float)mav_cmd.param2, param3 : (float)mav_cmd.param3, param4 : (float)mav_cmd.param4, latitude : (float)mav_cmd.x, longitude : (float)mav_cmd.y, altitude : (float)mav_cmd.z }; return WriteBlock(&pkt, sizeof(pkt)); } void DataFlash_Class::Log_Write_Radio(const mavlink_radio_t &packet) { struct log_Radio pkt = { LOG_PACKET_HEADER_INIT(LOG_RADIO_MSG), time_us : hal.scheduler->micros64(), rssi : packet.rssi, remrssi : packet.remrssi, txbuf : packet.txbuf, noise : packet.noise, remnoise : packet.remnoise, rxerrors : packet.rxerrors, fixed : packet.fixed }; WriteBlock(&pkt, sizeof(pkt)); } // Write a Camera packet void DataFlash_Class::Log_Write_Camera(const AP_AHRS &ahrs, const AP_GPS &gps, const Location ¤t_loc) { int32_t altitude, altitude_rel; if (current_loc.flags.relative_alt) { altitude = current_loc.alt+ahrs.get_home().alt; altitude_rel = current_loc.alt; } else { altitude = current_loc.alt; altitude_rel = current_loc.alt - ahrs.get_home().alt; } struct log_Camera pkt = { LOG_PACKET_HEADER_INIT(LOG_CAMERA_MSG), time_us : hal.scheduler->micros64(), gps_time : gps.time_week_ms(), gps_week : gps.time_week(), latitude : current_loc.lat, longitude : current_loc.lng, altitude : altitude, altitude_rel: altitude_rel, roll : (int16_t)ahrs.roll_sensor, pitch : (int16_t)ahrs.pitch_sensor, yaw : (uint16_t)ahrs.yaw_sensor }; WriteCriticalBlock(&pkt, sizeof(pkt)); } // Write an attitude packet void DataFlash_Class::Log_Write_Attitude(AP_AHRS &ahrs, const Vector3f &targets) { struct log_Attitude pkt = { LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG), time_us : hal.scheduler->micros64(), control_roll : (int16_t)targets.x, roll : (int16_t)ahrs.roll_sensor, control_pitch : (int16_t)targets.y, pitch : (int16_t)ahrs.pitch_sensor, control_yaw : (uint16_t)targets.z, yaw : (uint16_t)ahrs.yaw_sensor, error_rp : (uint16_t)(ahrs.get_error_rp() * 100), error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100) }; WriteBlock(&pkt, sizeof(pkt)); } // Write an Current data packet void DataFlash_Class::Log_Write_Current(const AP_BattMonitor &battery, int16_t throttle) { float voltage2 = battery.voltage2(); struct log_Current pkt = { LOG_PACKET_HEADER_INIT(LOG_CURRENT_MSG), time_us : hal.scheduler->micros64(), throttle : throttle, battery_voltage : (int16_t) (battery.voltage() * 100.0f), current_amps : (int16_t) (battery.current_amps() * 100.0f), board_voltage : (uint16_t)(hal.analogin->board_voltage()*1000), current_total : battery.current_total_mah(), battery2_voltage : (int16_t)(voltage2 * 100.0f) }; WriteBlock(&pkt, sizeof(pkt)); } // Write a Compass packet void DataFlash_Class::Log_Write_Compass(const Compass &compass) { const Vector3f &mag_field = compass.get_field_milligauss(0); const Vector3f &mag_offsets = compass.get_offsets(0); const Vector3f &mag_motor_offsets = compass.get_motor_offsets(0); struct log_Compass pkt = { LOG_PACKET_HEADER_INIT(LOG_COMPASS_MSG), time_us : hal.scheduler->micros64(), mag_x : (int16_t)mag_field.x, mag_y : (int16_t)mag_field.y, mag_z : (int16_t)mag_field.z, offset_x : (int16_t)mag_offsets.x, offset_y : (int16_t)mag_offsets.y, offset_z : (int16_t)mag_offsets.z, motor_offset_x : (int16_t)mag_motor_offsets.x, motor_offset_y : (int16_t)mag_motor_offsets.y, motor_offset_z : (int16_t)mag_motor_offsets.z, health : (uint8_t)compass.healthy(0) }; WriteBlock(&pkt, sizeof(pkt)); #if COMPASS_MAX_INSTANCES > 1 if (compass.get_count() > 1) { const Vector3f &mag_field2 = compass.get_field(1); const Vector3f &mag_offsets2 = compass.get_offsets(1); const Vector3f &mag_motor_offsets2 = compass.get_motor_offsets(1); struct log_Compass pkt2 = { LOG_PACKET_HEADER_INIT(LOG_COMPASS2_MSG), time_us : hal.scheduler->micros64(), mag_x : (int16_t)mag_field2.x, mag_y : (int16_t)mag_field2.y, mag_z : (int16_t)mag_field2.z, offset_x : (int16_t)mag_offsets2.x, offset_y : (int16_t)mag_offsets2.y, offset_z : (int16_t)mag_offsets2.z, motor_offset_x : (int16_t)mag_motor_offsets2.x, motor_offset_y : (int16_t)mag_motor_offsets2.y, motor_offset_z : (int16_t)mag_motor_offsets2.z, health : (uint8_t)compass.healthy(1) }; WriteBlock(&pkt2, sizeof(pkt2)); } #endif #if COMPASS_MAX_INSTANCES > 2 if (compass.get_count() > 2) { const Vector3f &mag_field3 = compass.get_field_milligauss(2); const Vector3f &mag_offsets3 = compass.get_offsets(2); const Vector3f &mag_motor_offsets3 = compass.get_motor_offsets(2); struct log_Compass pkt3 = { LOG_PACKET_HEADER_INIT(LOG_COMPASS3_MSG), time_us : hal.scheduler->micros64(), mag_x : (int16_t)mag_field3.x, mag_y : (int16_t)mag_field3.y, mag_z : (int16_t)mag_field3.z, offset_x : (int16_t)mag_offsets3.x, offset_y : (int16_t)mag_offsets3.y, offset_z : (int16_t)mag_offsets3.z, motor_offset_x : (int16_t)mag_motor_offsets3.x, motor_offset_y : (int16_t)mag_motor_offsets3.y, motor_offset_z : (int16_t)mag_motor_offsets3.z, health : (uint8_t)compass.healthy(2) }; WriteBlock(&pkt3, sizeof(pkt3)); } #endif } // Write a mode packet. bool DataFlash_Class::Log_Write_Mode(uint8_t mode) { struct log_Mode pkt = { LOG_PACKET_HEADER_INIT(LOG_MODE_MSG), time_us : hal.scheduler->micros64(), mode : mode, mode_num : mode }; return WriteCriticalBlock(&pkt, sizeof(pkt)); } // Write ESC status messages void DataFlash_Class::Log_Write_ESC(void) { #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 static int _esc_status_sub = -1; struct esc_status_s esc_status; if (_esc_status_sub == -1) { // subscribe to ORB topic on first call _esc_status_sub = orb_subscribe(ORB_ID(esc_status)); } // check for new ESC status data bool esc_updated = false; orb_check(_esc_status_sub, &esc_updated); if (esc_updated && (OK == orb_copy(ORB_ID(esc_status), _esc_status_sub, &esc_status))) { if (esc_status.esc_count > 8) { esc_status.esc_count = 8; } uint64_t time_us = hal.scheduler->micros64(); for (uint8_t i = 0; i < esc_status.esc_count; i++) { // skip logging ESCs with a esc_address of zero, and this // are probably not populated. The Pixhawk itself should // be address zero if (esc_status.esc[i].esc_address != 0) { struct log_Esc pkt = { LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ESC1_MSG + i)), time_us : time_us, rpm : (int16_t)(esc_status.esc[i].esc_rpm/10), voltage : (int16_t)(esc_status.esc[i].esc_voltage*100.0f + .5f), current : (int16_t)(esc_status.esc[i].esc_current*100.0f + .5f), temperature : (int16_t)(esc_status.esc[i].esc_temperature*100.0f + .5f) }; WriteBlock(&pkt, sizeof(pkt)); } } } #endif // CONFIG_HAL_BOARD } // Write a AIRSPEED packet void DataFlash_Class::Log_Write_Airspeed(AP_Airspeed &airspeed) { float temperature; if (!airspeed.get_temperature(temperature)) { temperature = 0; } struct log_AIRSPEED pkt = { LOG_PACKET_HEADER_INIT(LOG_ARSP_MSG), time_us : hal.scheduler->micros64(), airspeed : airspeed.get_raw_airspeed(), diffpressure : airspeed.get_differential_pressure(), temperature : (int16_t)(temperature * 100.0f), rawpressure : airspeed.get_raw_pressure(), offset : airspeed.get_offset() }; WriteBlock(&pkt, sizeof(pkt)); } // Write a Yaw PID packet void DataFlash_Class::Log_Write_PID(uint8_t msg_type, const PID_Info &info) { struct log_PID pkt = { LOG_PACKET_HEADER_INIT(msg_type), time_us : hal.scheduler->micros64(), desired : info.desired, P : info.P, I : info.I, D : info.D, FF : info.FF, AFF : info.AFF }; WriteBlock(&pkt, sizeof(pkt)); } void DataFlash_Class::Log_Write_Origin(uint8_t origin_type, const Location &loc) { uint64_t time_us = hal.scheduler->micros64(); struct log_ORGN pkt = { LOG_PACKET_HEADER_INIT(LOG_ORGN_MSG), time_us : time_us, origin_type : origin_type, latitude : loc.lat, longitude : loc.lng, altitude : loc.alt }; WriteBlock(&pkt, sizeof(pkt)); } void DataFlash_Class::Log_Write_RPM(const AP_RPM &rpm_sensor) { struct log_RPM pkt = { LOG_PACKET_HEADER_INIT(LOG_RPM_MSG), time_us : hal.scheduler->micros64(), rpm1 : rpm_sensor.get_rpm(0), rpm2 : rpm_sensor.get_rpm(1) }; WriteBlock(&pkt, sizeof(pkt)); }