#include "Blimp.h" #include "GCS_Mavlink.h" /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ MAV_TYPE GCS_Blimp::frame_type() const { return blimp.get_frame_mav_type(); } MAV_MODE GCS_MAVLINK_Blimp::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation // switch (blimp.control_mode) { // case Mode::Number::AUTO: // case Mode::Number::RTL: // case Mode::Number::LOITER: // case Mode::Number::AVOID_ADSB: // case Mode::Number::FOLLOW: // case Mode::Number::GUIDED: // case Mode::Number::CIRCLE: // case Mode::Number::POSHOLD: // case Mode::Number::BRAKE: // case Mode::Number::SMART_RTL: // _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // // APM does in any mode, as that is defined as "system finds its own goal // // positions", which APM does not currently do // break; // default: // break; // } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; #if HIL_MODE != HIL_MODE_DISABLED _base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (blimp.motors != nullptr && blimp.motors->armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_Blimp::custom_mode() const { return (uint32_t)blimp.control_mode; } MAV_STATE GCS_MAVLINK_Blimp::vehicle_system_status() const { // set system as critical if any failsafe have triggered if (blimp.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (blimp.ap.land_complete) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void GCS_MAVLINK_Blimp::send_position_target_global_int() { Location target; if (!blimp.flightmode->get_wp(target)) { return; } mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL, // targets are always global altitude 0xFFF8, // ignore everything except the x/y/z components target.lat, // latitude as 1e7 target.lng, // longitude as 1e7 target.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } // void GCS_MAVLINK_Blimp::send_position_target_local_ned() // { // #if MODE_GUIDED_ENABLED == ENABLED // if (!blimp.flightmode->in_guided_mode()) { // return; // } // const GuidedMode guided_mode = blimp.mode_guided.mode(); // Vector3f target_pos; // Vector3f target_vel; // uint16_t type_mask; // if (guided_mode == Guided_WP) { // type_mask = 0x0FF8; // ignore everything except position // target_pos = blimp.wp_nav->get_wp_destination() * 0.01f; // convert to metres // } else if (guided_mode == Guided_Velocity) { // type_mask = 0x0FC7; // ignore everything except velocity // target_vel = blimp.flightmode->get_desired_velocity() * 0.01f; // convert to m/s // } else { // type_mask = 0x0FC0; // ignore everything except position & velocity // target_pos = blimp.wp_nav->get_wp_destination() * 0.01f; // target_vel = blimp.flightmode->get_desired_velocity() * 0.01f; // } // mavlink_msg_position_target_local_ned_send( // chan, // AP_HAL::millis(), // time boot ms // MAV_FRAME_LOCAL_NED, // type_mask, // target_pos.x, // x in metres // target_pos.y, // y in metres // -target_pos.z, // z in metres NED frame // target_vel.x, // vx in m/s // target_vel.y, // vy in m/s // -target_vel.z, // vz in m/s NED frame // 0.0f, // afx // 0.0f, // afy // 0.0f, // afz // 0.0f, // yaw // 0.0f); // yaw_rate // #endif // } void GCS_MAVLINK_Blimp::send_nav_controller_output() const { // if (!blimp.ap.initialised) { // return; // } // const Vector3f &targets = blimp.attitude_control->get_att_target_euler_cd(); // const Mode *flightmode = blimp.flightmode; // mavlink_msg_nav_controller_output_send( // chan, // targets.x * 1.0e-2f, // targets.y * 1.0e-2f, // targets.z * 1.0e-2f, // flightmode->wp_bearing() * 1.0e-2f, // MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX), // blimp.pos_control->get_alt_error() * 1.0e-2f, // 0, // flightmode->crosstrack_error() * 1.0e-2f); } float GCS_MAVLINK_Blimp::vfr_hud_airspeed() const { Vector3f airspeed_vec_bf; if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // we are running the EKF3 wind estimation code which can give // us an airspeed estimate return airspeed_vec_bf.length(); } return AP::gps().ground_speed(); } int16_t GCS_MAVLINK_Blimp::vfr_hud_throttle() const { if (blimp.motors == nullptr) { return 0; } return (int16_t)(blimp.motors->get_throttle() * 100); } /* send PID tuning message */ void GCS_MAVLINK_Blimp::send_pid_tuning() { static const PID_TUNING_AXIS axes[] = { PID_TUNING_ROLL, PID_TUNING_PITCH, PID_TUNING_YAW, PID_TUNING_ACCZ }; for (uint8_t i=0; iget_rate_roll_pid().get_pid_info(); // break; // case PID_TUNING_PITCH: // pid_info = &blimp.attitude_control->get_rate_pitch_pid().get_pid_info(); // break; // case PID_TUNING_YAW: // pid_info = &blimp.attitude_control->get_rate_yaw_pid().get_pid_info(); // break; // case PID_TUNING_ACCZ: // pid_info = &blimp.pos_control->get_accel_z_pid().get_pid_info(); // break; default: continue; } if (pid_info != nullptr) { mavlink_msg_pid_tuning_send(chan, axes[i], pid_info->target, pid_info->actual, pid_info->FF, pid_info->P, pid_info->I, pid_info->D); } } } uint8_t GCS_MAVLINK_Blimp::sysid_my_gcs() const { return blimp.g.sysid_my_gcs; } bool GCS_MAVLINK_Blimp::sysid_enforce() const { return blimp.g2.sysid_enforce; } uint32_t GCS_MAVLINK_Blimp::telem_delay() const { return (uint32_t)(blimp.g.telem_delay); } bool GCS_Blimp::vehicle_initialised() const { return blimp.ap.initialised; } // try to send a message, return false if it wasn't sent bool GCS_MAVLINK_Blimp::try_send_message(enum ap_message id) { switch (id) { case MSG_WIND: CHECK_PAYLOAD_SIZE(WIND); send_wind(); break; case MSG_SERVO_OUT: case MSG_AOA_SSA: case MSG_LANDING: case MSG_ADSB_VEHICLE: // unused break; default: return GCS_MAVLINK::try_send_message(id); } return true; } const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, POWER_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 0), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS, HWSTATUS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, MOUNT_STATUS, OPTICAL_FLOW, GIMBAL_REPORT, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 0), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU, MSG_SCALED_IMU2, MSG_SCALED_IMU3, MSG_SCALED_PRESSURE, MSG_SCALED_PRESSURE2, MSG_SCALED_PRESSURE3, MSG_SENSOR_OFFSETS }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_SYS_STATUS, MSG_POWER_STATUS, MSG_MEMINFO, MSG_CURRENT_WAYPOINT, // MISSION_CURRENT MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RC_CHANNELS, MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, MSG_AHRS2, MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_SYSTEM_TIME, MSG_WIND, MSG_RANGEFINDER, MSG_DISTANCE_SENSOR, MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, MSG_RPM, MSG_ESC_TELEMETRY, MSG_GENERATOR_STATUS, }; static const ap_message STREAM_PARAMS_msgs[] = { MSG_NEXT_PARAM }; static const ap_message STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_ENTRY(STREAM_PARAMS), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Blimp::handle_guided_request(AP_Mission::Mission_Command &cmd) { // #if MODE_AUTO_ENABLED == ENABLED // // return blimp.mode_auto.do_guided(cmd); // #else return false; // #endif } void GCS_MAVLINK_Blimp::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // add home alt if needed if (cmd.content.location.relative_alt) { cmd.content.location.alt += blimp.ahrs.get_home().alt; } // To-Do: update target altitude for loiter or waypoint controller depending upon nav mode } void GCS_MAVLINK_Blimp::packetReceived(const mavlink_status_t &status, const mavlink_message_t &msg) { GCS_MAVLINK::packetReceived(status, msg); } bool GCS_MAVLINK_Blimp::params_ready() const { if (AP_BoardConfig::in_config_error()) { // we may never have parameters "initialised" in this case return true; } // if we have not yet initialised (including allocating the motors // object) we drop this request. That prevents the GCS from getting // a confusing parameter count during bootup return blimp.ap.initialised_params; } void GCS_MAVLINK_Blimp::send_banner() { GCS_MAVLINK::send_banner(); send_text(MAV_SEVERITY_INFO, "Frame: %s", blimp.get_frame_string()); } // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes void GCS_MAVLINK_Blimp::handle_rc_channels_override(const mavlink_message_t &msg) { blimp.failsafe.last_heartbeat_ms = AP_HAL::millis(); GCS_MAVLINK::handle_rc_channels_override(msg); } void GCS_MAVLINK_Blimp::handle_command_ack(const mavlink_message_t &msg) { blimp.command_ack_counter++; GCS_MAVLINK::handle_command_ack(msg); } MAV_RESULT GCS_MAVLINK_Blimp::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_do_set_roi(const Location &roi_loc) { if (!roi_loc.check_latlng()) { return MAV_RESULT_FAILED; } // blimp.flightmode->auto_yaw.set_roi(roi_loc); return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Blimp::handle_preflight_reboot(const mavlink_command_long_t &packet) { // call parent return GCS_MAVLINK::handle_preflight_reboot(packet); } bool GCS_MAVLINK_Blimp::set_home_to_current_location(bool _lock) { return blimp.set_home_to_current_location(_lock); } bool GCS_MAVLINK_Blimp::set_home(const Location& loc, bool _lock) { return blimp.set_home(loc, _lock); } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_do_reposition(const mavlink_command_int_t &packet) { const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE; if (!blimp.flightmode->in_guided_mode() && !change_modes) { return MAV_RESULT_DENIED; } // sanity check location if (!check_latlng(packet.x, packet.y)) { return MAV_RESULT_DENIED; } Location request_location {}; request_location.lat = packet.x; request_location.lng = packet.y; if (fabsf(packet.z) > LOCATION_ALT_MAX_M) { return MAV_RESULT_DENIED; } Location::AltFrame frame; if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.frame, frame)) { return MAV_RESULT_DENIED; // failed as the location is not valid } request_location.set_alt_cm((int32_t)(packet.z * 100.0f), frame); if (request_location.sanitize(blimp.current_loc)) { // if the location wasn't already sane don't load it return MAV_RESULT_DENIED; // failed as the location is not valid } return MAV_RESULT_ACCEPTED; } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_packet(const mavlink_command_int_t &packet) { switch (packet.command) { case MAV_CMD_DO_FOLLOW: return MAV_RESULT_UNSUPPORTED; case MAV_CMD_DO_REPOSITION: return handle_command_int_do_reposition(packet); default: return GCS_MAVLINK::handle_command_int_packet(packet); } } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_mount(const mavlink_command_long_t &packet) { // if the mount doesn't do pan control then yaw the entire vehicle instead: switch (packet.command) { default: break; } return GCS_MAVLINK::handle_command_mount(packet); } MAV_RESULT GCS_MAVLINK_Blimp::handle_command_long_packet(const mavlink_command_long_t &packet) { switch (packet.command) { case MAV_CMD_NAV_TAKEOFF: { // param3 : horizontal navigation by pilot acceptable // param4 : yaw angle (not supported) // param5 : latitude (not supported) // param6 : longitude (not supported) // param7 : altitude [metres] // float takeoff_alt = packet.param7 * 100; // Convert m to cm // if (!blimp.flightmode->do_user_takeoff(takeoff_alt, is_zero(packet.param3))) { // return MAV_RESULT_FAILED; //MIR Do I need this? // } return MAV_RESULT_ACCEPTED; } // #if MODE_AUTO_ENABLED == ENABLED // case MAV_CMD_DO_LAND_START: // if (blimp.mode_auto.mission.jump_to_landing_sequence() && blimp.set_mode(Mode::Number::AUTO, ModeReason::GCS_COMMAND)) { // return MAV_RESULT_ACCEPTED; // } // return MAV_RESULT_FAILED; // #endif // case MAV_CMD_NAV_LOITER_UNLIM: // if (!blimp.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) { // return MAV_RESULT_FAILED; // } // return MAV_RESULT_ACCEPTED; // case MAV_CMD_NAV_RETURN_TO_LAUNCH: // if (!blimp.set_mode(Mode::Number::RTL, ModeReason::GCS_COMMAND)) { // return MAV_RESULT_FAILED; // } // return MAV_RESULT_ACCEPTED; case MAV_CMD_CONDITION_YAW: // param1 : target angle [0-360] // param2 : speed during change [deg per second] // param3 : direction (-1:ccw, +1:cw) // param4 : relative offset (1) or absolute angle (0) if ((packet.param1 >= 0.0f) && (packet.param1 <= 360.0f) && (is_zero(packet.param4) || is_equal(packet.param4,1.0f))) { // blimp.flightmode->auto_yaw.set_fixed_yaw( // packet.param1, // packet.param2, // (int8_t)packet.param3, // is_positive(packet.param4)); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_FAILED; default: return GCS_MAVLINK::handle_command_long_packet(packet); } } void GCS_MAVLINK_Blimp::handleMessage(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_HEARTBEAT: { // MAV ID: 0 // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if (msg.sysid != blimp.g.sysid_my_gcs) { break; } blimp.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } // #if MODE_GUIDED_ENABLED == ENABLED // case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82 // { // // decode packet // mavlink_set_attitude_target_t packet; // mavlink_msg_set_attitude_target_decode(&msg, &packet); // // exit if vehicle is not in Guided mode or Auto-Guided mode // if (!blimp.flightmode->in_guided_mode()) { // break; // } // // ensure type_mask specifies to use attitude and thrust // if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) { // break; // } // // check if the message's thrust field should be interpreted as a climb rate or as thrust // const bool use_thrust = blimp.g2.dev_options.get() & DevOptionSetAttitudeTarget_ThrustAsThrust; // float climb_rate_or_thrust; // if (use_thrust) { // // interpret thrust as thrust // climb_rate_or_thrust = constrain_float(packet.thrust, -1.0f, 1.0f); // } else { // // convert thrust to climb rate // packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f); // if (is_equal(packet.thrust, 0.5f)) { // climb_rate_or_thrust = 0.0f; // } else if (packet.thrust > 0.5f) { // // climb at up to WPNAV_SPEED_UP // climb_rate_or_thrust = (packet.thrust - 0.5f) * 2.0f * blimp.wp_nav->get_default_speed_up(); // } else { // // descend at up to WPNAV_SPEED_DN // climb_rate_or_thrust = (0.5f - packet.thrust) * 2.0f * -fabsf(blimp.wp_nav->get_default_speed_down()); // } // } // // if the body_yaw_rate field is ignored, use the commanded yaw position // // otherwise use the commanded yaw rate // bool use_yaw_rate = false; // if ((packet.type_mask & (1<<2)) == 0) { // use_yaw_rate = true; // } // blimp.mode_guided.set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]), // climb_rate_or_thrust, use_yaw_rate, packet.body_yaw_rate, use_thrust); // break; // } // case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 // { // // decode packet // mavlink_set_position_target_local_ned_t packet; // mavlink_msg_set_position_target_local_ned_decode(&msg, &packet); // // exit if vehicle is not in Guided mode or Auto-Guided mode // if (!blimp.flightmode->in_guided_mode()) { // break; // } // // check for supported coordinate frames // if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && // packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && // packet.coordinate_frame != MAV_FRAME_BODY_NED && // packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { // break; // } // bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; // bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; // bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; // bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; // bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // // exit immediately if acceleration provided // if (!acc_ignore) { // break; // } // // prepare position // Vector3f pos_vector; // if (!pos_ignore) { // // convert to cm // pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f); // // rotate to body-frame if necessary // if (packet.coordinate_frame == MAV_FRAME_BODY_NED || // packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { // blimp.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y); // } // // add body offset if necessary // if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED || // packet.coordinate_frame == MAV_FRAME_BODY_NED || // packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { // pos_vector += blimp.inertial_nav.get_position(); // } // } // // prepare velocity // Vector3f vel_vector; // if (!vel_ignore) { // // convert to cm // vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); // // rotate to body-frame if necessary // if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { // blimp.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y); // } // } // // prepare yaw // float yaw_cd = 0.0f; // bool yaw_relative = false; // float yaw_rate_cds = 0.0f; // if (!yaw_ignore) { // yaw_cd = ToDeg(packet.yaw) * 100.0f; // yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED; // } // if (!yaw_rate_ignore) { // yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; // } // // send request // if (!pos_ignore && !vel_ignore) { // blimp.mode_guided.set_destination_posvel(pos_vector, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); // } else if (pos_ignore && !vel_ignore) { // blimp.mode_guided.set_velocity(vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); // } else if (!pos_ignore && vel_ignore) { // blimp.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); // } // break; // } // case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 // { // // decode packet // mavlink_set_position_target_global_int_t packet; // mavlink_msg_set_position_target_global_int_decode(&msg, &packet); // // exit if vehicle is not in Guided mode or Auto-Guided mode // if (!blimp.flightmode->in_guided_mode()) { // break; // } // bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; // bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; // bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; // bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; // bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; // // exit immediately if acceleration provided // if (!acc_ignore) { // break; // } // // extract location from message // Location loc; // if (!pos_ignore) { // // sanity check location // if (!check_latlng(packet.lat_int, packet.lon_int)) { // break; // } // Location::AltFrame frame; // if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) { // // unknown coordinate frame // break; // } // loc = {packet.lat_int, packet.lon_int, int32_t(packet.alt*100), frame}; // } // // prepare yaw // float yaw_cd = 0.0f; // bool yaw_relative = false; // float yaw_rate_cds = 0.0f; // if (!yaw_ignore) { // yaw_cd = ToDeg(packet.yaw) * 100.0f; // yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED; // } // if (!yaw_rate_ignore) { // yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; // } // // send targets to the appropriate guided mode controller // if (!pos_ignore && !vel_ignore) { // // convert Location to vector from ekf origin for posvel controller // if (loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) { // // posvel controller does not support alt-above-terrain // break; // } // Vector3f pos_neu_cm; // if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) { // break; // } // blimp.mode_guided.set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); // } else if (pos_ignore && !vel_ignore) { // blimp.mode_guided.set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); // } else if (!pos_ignore && vel_ignore) { // blimp.mode_guided.set_destination(loc, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); // } // break; // } // #endif case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: { // MAV ID: 109 handle_radio_status(msg, blimp.should_log(MASK_LOG_PM)); break; } case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: break; case MAVLINK_MSG_ID_SET_HOME_POSITION: { mavlink_set_home_position_t packet; mavlink_msg_set_home_position_decode(&msg, &packet); if ((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) { if (!blimp.set_home_to_current_location(true)) { // silently ignored } } else { Location new_home_loc; new_home_loc.lat = packet.latitude; new_home_loc.lng = packet.longitude; new_home_loc.alt = packet.altitude / 10; if (!blimp.set_home(new_home_loc, true)) { // silently ignored } } break; } case MAVLINK_MSG_ID_ADSB_VEHICLE: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC: case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT: break; default: handle_common_message(msg); break; } // end switch } // end handle mavlink MAV_RESULT GCS_MAVLINK_Blimp::handle_flight_termination(const mavlink_command_long_t &packet) { MAV_RESULT result = MAV_RESULT_FAILED; if (packet.param1 > 0.5f) { blimp.arming.disarm(AP_Arming::Method::TERMINATION); result = MAV_RESULT_ACCEPTED; } return result; } float GCS_MAVLINK_Blimp::vfr_hud_alt() const { if (blimp.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) { // compatibility option for older mavlink-aware devices that // assume Blimp returns a relative altitude in VFR_HUD.alt return blimp.current_loc.alt * 0.01f; } return GCS_MAVLINK::vfr_hud_alt(); } uint64_t GCS_MAVLINK_Blimp::capabilities() const { return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT | MAV_PROTOCOL_CAPABILITY_MISSION_INT | MAV_PROTOCOL_CAPABILITY_COMMAND_INT | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED | MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT | MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION | MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET | GCS_MAVLINK::capabilities()); } MAV_LANDED_STATE GCS_MAVLINK_Blimp::landed_state() const { if (blimp.ap.land_complete) { return MAV_LANDED_STATE_ON_GROUND; } if (blimp.flightmode->is_landing()) { return MAV_LANDED_STATE_LANDING; } // if (blimp.flightmode->is_taking_off()) { // return MAV_LANDED_STATE_TAKEOFF; // } return MAV_LANDED_STATE_IN_AIR; } void GCS_MAVLINK_Blimp::send_wind() const { Vector3f airspeed_vec_bf; if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) { // if we don't have an airspeed estimate then we don't have a // valid wind estimate on blimps return; } const Vector3f wind = AP::ahrs().wind_estimate(); mavlink_msg_wind_send( chan, degrees(atan2f(-wind.y, -wind.x)), wind.length(), wind.z); }