/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
simulate ship takeoff/landing
*/
#include "SIM_config.h"
#if AP_SIM_SHIP_ENABLED
#include "SIM_Ship.h"
#include "SITL.h"
#include
#include "SIM_Aircraft.h"
#include
#include
using namespace SITL;
// SITL Ship parameters
const AP_Param::GroupInfo ShipSim::var_info[] = {
AP_GROUPINFO("ENABLE", 1, ShipSim, enable, 0),
AP_GROUPINFO("SPEED", 2, ShipSim, speed, 3),
AP_GROUPINFO("PSIZE", 3, ShipSim, path_size, 1000),
AP_GROUPINFO("SYSID", 4, ShipSim, sys_id, 17),
AP_GROUPINFO("DSIZE", 5, ShipSim, deck_size, 10),
AP_GROUPINFO("OFS", 7, ShipSim, offset, 0),
AP_GROUPEND
};
/*
update a simulated vehicle
*/
void Ship::update(float delta_t)
{
// acceletate over time to keep EKF happy
const float max_accel = 3.0;
const float dspeed_max = max_accel * delta_t;
speed = constrain_float(sim->speed.get(), speed-dspeed_max, speed+dspeed_max);
// calculate how far around the circle we go
float circumference = M_PI * sim->path_size.get();
float dist = delta_t * speed;
float dangle = (dist / circumference) * 360.0;
if (delta_t > 0) {
yaw_rate = radians(dangle) / delta_t;
}
heading_deg += dangle;
heading_deg = wrap_360(heading_deg);
Vector2f dpos(dist, 0);
dpos.rotate(radians(heading_deg));
position += dpos;
}
ShipSim::ShipSim()
{
AP_Param::setup_object_defaults(this, var_info);
}
/*
get the location of the ship
*/
bool ShipSim::get_location(Location &loc) const
{
if (!enable) {
return false;
}
loc = home;
loc.offset(ship.position.x, ship.position.y);
return true;
}
/*
get ground speed adjustment if we are landed on the ship
*/
Vector2f ShipSim::get_ground_speed_adjustment(const Location &loc, float &yaw_rate)
{
Location shiploc;
if (!get_location(shiploc)) {
yaw_rate = 0;
return Vector2f(0,0);
}
if (loc.get_distance(shiploc) > deck_size) {
yaw_rate = 0;
return Vector2f(0,0);
}
// find center of the circle that the ship is on
Location center = shiploc;
const float path_radius = path_size.get()*0.5;
center.offset_bearing(ship.heading_deg+(ship.yaw_rate>0?90:-90), path_radius);
// scale speed for ratio of distances
const float p = center.get_distance(loc) / path_radius;
const float scaled_speed = ship.speed * p;
// work out how far around the circle ahead or behind we are for
// rotating velocity
const float bearing1 = center.get_bearing(loc);
const float bearing2 = center.get_bearing(shiploc);
const float heading = ship.heading_deg + degrees(bearing1-bearing2);
Vector2f vel(scaled_speed, 0);
vel.rotate(radians(heading));
yaw_rate = ship.yaw_rate;
return vel;
}
/*
update the ShipSim peripheral state
*/
void ShipSim::update(void)
{
if (!enable) {
return;
}
auto *sitl = AP::sitl();
uint32_t now_us = AP_HAL::micros();
if (!initialised) {
home = sitl->state.home;
if (home.lat == 0 && home.lng == 0) {
return;
}
const Vector3f &ofs = offset.get();
home.offset(ofs.x, ofs.y);
home.alt -= ofs.z*100;
initialised = true;
::printf("ShipSim home %f %f\n", home.lat*1.0e-7, home.lng*1.0e-7);
ship.sim = this;
last_update_us = now_us;
last_report_ms = AP_HAL::millis();
}
float dt = (now_us - last_update_us)*1.0e-6;
last_update_us = now_us;
ship.update(dt);
uint32_t now_ms = AP_HAL::millis();
if (now_ms - last_report_ms >= reporting_period_ms) {
last_report_ms = now_ms;
send_report();
}
}
/*
send a report to the vehicle control code over MAVLink
*/
void ShipSim::send_report(void)
{
if (!mavlink_connected && mav_socket.connect(target_address, target_port)) {
::printf("ShipSim connected to %s:%u\n", target_address, (unsigned)target_port);
mavlink_connected = true;
}
if (!mavlink_connected) {
return;
}
uint32_t now = AP_HAL::millis();
const uint8_t component_id = MAV_COMP_ID_USER10;
if (now - last_heartbeat_ms >= 1000) {
last_heartbeat_ms = now;
const mavlink_heartbeat_t heartbeat{
type : MAV_TYPE_SURFACE_BOAT,
autopilot : MAV_AUTOPILOT_INVALID};
mavlink_message_t msg;
mavlink_msg_heartbeat_encode_status(
sys_id.get(),
component_id,
&mav_status,
&msg,
&heartbeat);
uint8_t buf[300];
const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
mav_socket.send(buf, len);
}
/*
send a GLOBAL_POSITION_INT messages
*/
Location loc;
if (!get_location(loc)) {
return;
}
int32_t alt_mm = home.alt * 10; // assume home altitude
#if AP_TERRAIN_AVAILABLE
auto terrain = AP::terrain();
float height;
if (terrain != nullptr && terrain->enabled() && terrain->height_amsl(loc, height, false)) {
alt_mm = height * 1000;
}
#endif
{ // send position
Vector2f vel(ship.speed, 0);
vel.rotate(radians(ship.heading_deg));
const mavlink_global_position_int_t global_position_int{
time_boot_ms: now,
lat: loc.lat,
lon: loc.lng,
alt: alt_mm,
relative_alt: 0,
vx: int16_t(vel.x*100),
vy: int16_t(vel.y*100),
vz: 0,
hdg: uint16_t(ship.heading_deg*100)
};
mavlink_message_t msg;
mavlink_msg_global_position_int_encode_status(
sys_id,
component_id,
&mav_status,
&msg,
&global_position_int);
uint8_t buf[300];
const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
if (len > 0) {
mav_socket.send(buf, len);
}
}
{ // also set ATTITUDE so MissionPlanner can display ship orientation
const mavlink_attitude_t attitude{
time_boot_ms: now,
roll: 0,
pitch: 0,
yaw: float(radians(ship.heading_deg)),
rollspeed: 0,
pitchspeed: 0,
yawspeed: ship.yaw_rate
};
mavlink_message_t msg;
mavlink_msg_attitude_encode_status(
sys_id,
component_id,
&mav_status,
&msg,
&attitude);
uint8_t buf[300];
const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
if (len > 0) {
mav_socket.send(buf, len);
}
}
}
#endif