/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* SRV_Channel_aux.cpp - handling of servo auxillary functions */ #include "SRV_Channel.h" #include #include #include extern const AP_HAL::HAL& hal; /// map a function to a servo channel and output it void SRV_Channel::output_ch(void) { int8_t passthrough_from = -1; // take care of special function cases switch(function) { case k_manual: // manual passthrough_from = ch_num; break; case k_rcin1 ... k_rcin16: // rc pass-thru passthrough_from = int8_t(function - k_rcin1); break; } if (passthrough_from != -1) { // we are doing passthrough from input to output for this channel RC_Channel *c = rc().channel(passthrough_from); if (c) { if (SRV_Channels::passthrough_disabled()) { output_pwm = c->get_radio_trim(); } else { const int16_t radio_in = c->get_radio_in(); if (!ign_small_rcin_changes) { output_pwm = radio_in; previous_radio_in = radio_in; } else { // check if rc input value has changed by more than the deadzone if (abs(radio_in - previous_radio_in) > c->get_dead_zone()) { output_pwm = radio_in; ign_small_rcin_changes = false; } } } } } if (!(SRV_Channels::disabled_mask & (1U<write(ch_num, output_pwm); } } /* call output_ch() on all channels */ void SRV_Channels::output_ch_all(void) { for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { channels[i].output_ch(); } } /* return the current function for a channel */ SRV_Channel::Aux_servo_function_t SRV_Channels::channel_function(uint8_t channel) { if (channel < NUM_SERVO_CHANNELS) { return (SRV_Channel::Aux_servo_function_t)channels[channel].function.get(); } return SRV_Channel::k_none; } /* setup a channels aux servo function */ void SRV_Channel::aux_servo_function_setup(void) { if (type_setup) { return; } switch (function) { case k_flap: case k_flap_auto: case k_egg_drop: set_range(100); break; case k_heli_rsc: case k_heli_tail_rsc: case k_motor_tilt: case k_boost_throttle: case k_thrust_out: set_range(1000); break; case k_aileron_with_input: case k_elevator_with_input: case k_aileron: case k_elevator: case k_dspoilerLeft1: case k_dspoilerLeft2: case k_dspoilerRight1: case k_dspoilerRight2: case k_rudder: case k_steering: case k_flaperon_left: case k_flaperon_right: case k_tiltMotorLeft: case k_tiltMotorRight: case k_elevon_left: case k_elevon_right: case k_vtail_left: case k_vtail_right: case k_scripting1: case k_scripting2: case k_scripting3: case k_scripting4: case k_scripting5: case k_scripting6: case k_scripting7: case k_scripting8: case k_scripting9: case k_scripting10: case k_scripting11: case k_scripting12: case k_scripting13: case k_scripting14: case k_scripting15: case k_scripting16: case k_roll_out: case k_pitch_out: case k_yaw_out: set_angle(4500); break; case k_throttle: case k_throttleLeft: case k_throttleRight: case k_airbrake: // fixed wing throttle set_range(100); break; default: break; } } /// setup the output range types of all functions void SRV_Channels::update_aux_servo_function(void) { if (!channels) { return; } function_mask.clearall(); for (uint8_t i = 0; i < SRV_Channel::k_nr_aux_servo_functions; i++) { functions[i].channel_mask = 0; } // set auxiliary ranges for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if ((uint8_t)channels[i].function.get() < SRV_Channel::k_nr_aux_servo_functions) { channels[i].aux_servo_function_setup(); function_mask.set((uint8_t)channels[i].function.get()); functions[channels[i].function.get()].channel_mask |= 1U<set_default_rate(uint16_t(_singleton->default_rate.get())); update_aux_servo_function(); // enable all channels that are set to a valid function. This // includes k_none servos, which allows those to get their initial // trim value on startup for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { SRV_Channel &c = channels[i]; // see if it is a valid function if ((uint8_t)c.function.get() < SRV_Channel::k_nr_aux_servo_functions) { hal.rcout->enable_ch(c.ch_num); } // output some servo functions before we fiddle with the // parameter values: if (c.function.get() == SRV_Channel::k_min) { c.set_output_pwm(c.servo_min); c.output_ch(); } else if (c.function.get() == SRV_Channel::k_trim) { c.set_output_pwm(c.servo_trim); c.output_ch(); } else if (c.function.get() == SRV_Channel::k_max) { c.set_output_pwm(c.servo_max); c.output_ch(); } /* for channels which have been marked as digital output then the MIN/MAX/TRIM values have no meaning for controlling output, as the HAL handles the scaling. We still need to cope with places in the code that may try to set a PWM value however, so to ensure consistency we force the MIN/MAX/TRIM to be consistent across all digital channels. We use a MIN/MAX of 1000/2000, and set TRIM to either 1000 or 1500 depending on whether the channel is reversible */ if (digital_mask & (1U<update(); #endif } /// enable output channels using a channel mask void SRV_Channels::enable_by_mask(uint16_t mask) { for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (mask & (1U<enable_ch(i); } } } /* set radio_out for all channels matching the given function type */ void SRV_Channels::set_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t value) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { channels[i].set_output_pwm(value); channels[i].output_ch(); } } } /* set radio_out for all channels matching the given function type trim the output assuming a 1500 center on the given value reverses pwm output based on channel reversed property */ void SRV_Channels::set_output_pwm_trimmed(SRV_Channel::Aux_servo_function_t function, int16_t value) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { int16_t value2; if (channels[i].get_reversed()) { value2 = 1500 - value + channels[i].get_trim(); } else { value2 = value - 1500 + channels[i].get_trim(); } channels[i].set_output_pwm(constrain_int16(value2,channels[i].get_output_min(),channels[i].get_output_max())); channels[i].output_ch(); } } } /* set and save the trim value to current output for all channels matching the given function type */ void SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::Aux_servo_function_t function) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { channels[i].servo_trim.set_and_save_ifchanged(channels[i].get_output_pwm()); } } } /* copy radio_in to radio_out for a given function */ void SRV_Channels::copy_radio_in_out(SRV_Channel::Aux_servo_function_t function, bool do_input_output) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if (channels[i].function.get() == function) { RC_Channel *c = rc().channel(channels[i].ch_num); if (c == nullptr) { continue; } channels[i].set_output_pwm(c->get_radio_in()); if (do_input_output) { channels[i].output_ch(); } } } } /* copy radio_in to radio_out for a channel mask */ void SRV_Channels::copy_radio_in_out_mask(uint16_t mask) { for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { if ((1U<get_radio_in()); } } } /* setup failsafe value for an auxiliary function type to a Limit */ void SRV_Channels::set_failsafe_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t pwm) { if (!function_assigned(function)) { return; } for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { const SRV_Channel &c = channels[i]; if (c.function.get() == function) { hal.rcout->set_failsafe_pwm(1U<set_failsafe_pwm(1U<set_safety_pwm(1U<set_radio_in(pwm); } } } } } /* return true if a particular function is assigned to at least one RC channel */ bool SRV_Channels::function_assigned(SRV_Channel::Aux_servo_function_t function) { return function_mask.get(uint16_t(function)); } /* set servo_out and angle_min/max, then calc_pwm and output a value. This is used to move a AP_Mount servo */ void SRV_Channels::move_servo(SRV_Channel::Aux_servo_function_t function, int16_t value, int16_t angle_min, int16_t angle_max) { if (!function_assigned(function)) { return; } if (angle_max <= angle_min) { return; } float v = float(value - angle_min) / float(angle_max - angle_min); v = constrain_float(v, 0.0f, 1.0f); for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) { SRV_Channel &c = channels[i]; if (c.function.get() == function) { float v2 = c.get_reversed()? (1-v) : v; uint16_t pwm = c.servo_min + v2 * (c.servo_max - c.servo_min); c.set_output_pwm(pwm); } } } /* set the default channel an auxiliary output function should be on */ bool SRV_Channels::set_aux_channel_default(SRV_Channel::Aux_servo_function_t function, uint8_t channel) { if (!initialised) { update_aux_servo_function(); } if (function_assigned(function)) { // already assigned return true; } if (channels[channel].function != SRV_Channel::k_none) { if (channels[channel].function == function) { return true; } hal.console->printf("Channel %u already assigned function %u\n", (unsigned)(channel + 1), (unsigned)channels[channel].function); return false; } channels[channel].type_setup = false; channels[channel].function.set(function); channels[channel].aux_servo_function_setup(); function_mask.set((uint8_t)function); functions[function].channel_mask |= 1U<= 0) { set_aux_channel_default(function, default_chan); } if (!find_channel(function, chan)) { return nullptr; } return &channels[chan]; } void SRV_Channels::set_output_scaled(SRV_Channel::Aux_servo_function_t function, int16_t value) { if (function < SRV_Channel::k_nr_aux_servo_functions) { functions[function].output_scaled = value; SRV_Channel::have_pwm_mask &= ~functions[function].channel_mask; } } int16_t SRV_Channels::get_output_scaled(SRV_Channel::Aux_servo_function_t function) { if (function < SRV_Channel::k_nr_aux_servo_functions) { return functions[function].output_scaled; } return 0; } /* get mask of output channels for a function */ uint16_t SRV_Channels::get_output_channel_mask(SRV_Channel::Aux_servo_function_t function) { if (!initialised) { update_aux_servo_function(); } if (function < SRV_Channel::k_nr_aux_servo_functions) { return functions[function].channel_mask; } return 0; } // set the trim for a function channel to given pwm void SRV_Channels::set_trim_to_pwm_for(SRV_Channel::Aux_servo_function_t function, int16_t pwm) { for (uint8_t i=0; iset_esc_scaling(channels[chan].get_output_min(), channels[chan].get_output_max()); } } /* auto-adjust channel trim from an integrator value. Positive v means adjust trim up. Negative means decrease */ void SRV_Channels::adjust_trim(SRV_Channel::Aux_servo_function_t function, float v) { if (is_zero(v)) { return; } for (uint8_t i=0; i 0 && trim_scaled < 0.6f) { new_trim++; } else if (change < 0 && trim_scaled > 0.4f) { new_trim--; } else { return; } c.servo_trim.set(new_trim); trimmed_mask |= 1U<read_last_sent(c.ch_num); if (last_pwm == c.get_output_pwm()) { continue; } uint16_t max_change = (c.get_output_max() - c.get_output_min()) * slew_rate * dt * 0.01f; if (max_change == 0 || dt > 1) { // always allow some change. If dt > 1 then assume we // are just starting out, and only allow a small // change for this loop max_change = 1; } c.set_output_pwm(constrain_int16(c.get_output_pwm(), last_pwm-max_change, last_pwm+max_change)); } } } // call set_angle() on matching channels void SRV_Channels::set_angle(SRV_Channel::Aux_servo_function_t function, uint16_t angle) { for (uint8_t i=0; iset_freq(mask, frequency_hz); } }