/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_MotorsHeli.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include
#include
#include "AP_MotorsHeli.h"
#include
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] = {
// 1 was ROL_MAX which has been replaced by CYC_MAX
// 2 was PIT_MAX which has been replaced by CYC_MAX
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: Lowest possible servo position in PWM microseconds for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 3, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: Highest possible servo position in PWM microseconds for the swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 4, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: Swash servo position in PWM microseconds corresponding to zero collective pitch (or zero lift for Asymmetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 5, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Manual servo override for swash set-up. Do not set this manually!
// @Values: 0:Disabled,1:Passthrough,2:Max collective,3:Mid collective,4:Min collective
// @User: Standard
AP_GROUPINFO("SV_MAN", 6, AP_MotorsHeli, _servo_mode, SERVO_CONTROL_MODE_AUTOMATED),
// @Param: RSC_SETPOINT
// @DisplayName: External Motor Governor Setpoint
// @Description: PWM in microseconds passed to the external motor governor when external governor is enabled
// @Range: 0 1000
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_SETPOINT", 7, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT),
// @Param: RSC_MODE
// @DisplayName: Rotor Speed Control Mode
// @Description: Determines the method of rotor speed control
// @Values: 1:Ch8 Input, 2:SetPoint, 3:Throttle Curve
// @User: Standard
AP_GROUPINFO("RSC_MODE", 8, AP_MotorsHeli, _rsc_mode, (int8_t)ROTOR_CONTROL_MODE_SPEED_PASSTHROUGH),
// @Param: LAND_COL_MIN
// @DisplayName: Landing Collective Minimum
// @Description: Minimum collective position in PWM microseconds while landed or landing
// @Range: 0 500
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("LAND_COL_MIN", 9, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN),
// @Param: RSC_RAMP_TIME
// @DisplayName: RSC Ramp Time
// @Description: Time in seconds for the output to the main rotor's ESC to reach full speed
// @Range: 0 60
// @Units: s
// @User: Standard
AP_GROUPINFO("RSC_RAMP_TIME", 10, AP_MotorsHeli, _rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME),
// @Param: RSC_RUNUP_TIME
// @DisplayName: RSC Runup Time
// @Description: Time in seconds for the main rotor to reach full speed. Must be longer than RSC_RAMP_TIME
// @Range: 0 60
// @Units: s
// @User: Standard
AP_GROUPINFO("RSC_RUNUP_TIME", 11, AP_MotorsHeli, _rsc_runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME),
// @Param: RSC_CRITICAL
// @DisplayName: Critical Rotor Speed
// @Description: Rotor speed below which flight is not possible
// @Range: 0 1000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_CRITICAL", 12, AP_MotorsHeli, _rsc_critical, AP_MOTORS_HELI_RSC_CRITICAL),
// @Param: RSC_IDLE
// @DisplayName: Rotor Speed Output at Idle
// @Description: Rotor speed output while armed but rotor control speed is not engaged
// @Range: 0 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_IDLE", 13, AP_MotorsHeli, _rsc_idle_output, AP_MOTORS_HELI_RSC_IDLE_DEFAULT),
// @Param: RSC_POWER_LOW
// @DisplayName: Throttle Servo Low Power Position
// @Description: Throttle output at zero collective pitch. This is on a scale from 0 to 1000, where 1000 is full throttle and 0 is zero throttle. Actual PWM values are controlled by H_RSC_PWM_MIN and H_RSC_PWM_MAX. Zero collective pitch is defined by H_COL_MID.
// @Range: 0 1000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_POWER_LOW", 14, AP_MotorsHeli, _rsc_power_low, AP_MOTORS_HELI_RSC_POWER_LOW_DEFAULT),
// @Param: RSC_POWER_HIGH
// @DisplayName: Throttle Servo High Power Position
// @Description: Throttle output at maximum collective pitch. This is on a scale from 0 to 1000, where 1000 is full throttle and 0 is zero throttle. Actual PWM values are controlled by H_RSC_PWM_MIN and H_RSC_PWM_MAX.
// @Range: 0 1000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_POWER_HIGH", 15, AP_MotorsHeli, _rsc_power_high, AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT),
// @Param: CYC_MAX
// @DisplayName: Cyclic Pitch Angle Max
// @Description: Maximum pitch angle of the swash plate
// @Range: 0 18000
// @Units: cdeg
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("CYC_MAX", 16, AP_MotorsHeli, _cyclic_max, AP_MOTORS_HELI_SWASH_CYCLIC_MAX),
// @Param: SV_TEST
// @DisplayName: Boot-up Servo Test Cycles
// @Description: Number of cycles to run servo test on boot-up
// @Range: 0 10
// @Increment: 1
// @User: Standard
AP_GROUPINFO("SV_TEST", 17, AP_MotorsHeli, _servo_test, 0),
// @Param: RSC_POWER_NEGC
// @DisplayName: Throttle servo negative collective power position
// @Description: Throttle output at full negative collective pitch. This is on a scale from 0 to 1000, where 1000 is full throttle and 0 is zero throttle. Actual PWM values are controlled by H_RSC_PWM_MIN and H_RSC_PWM_MAX. If this is equal to H_RSC_POWER_HIGH then you will have a symmetric V-curve for the throttle response.
// @Range: 1 1000
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_POWER_NEGC", 18, AP_MotorsHeli, _rsc_power_negc, AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT),
// @Param: RSC_SLEWRATE
// @DisplayName: Throttle servo slew rate
// @Description: This controls the maximum rate at which the throttle output can change, as a percentage per second. A value of 100 means the throttle can change over its full range in one second. A value of zero gives unlimited slew rate.
// @Range: 0 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("RSC_SLEWRATE", 19, AP_MotorsHeli, _rsc_slewrate, 0),
AP_GROUPEND
};
//
// public methods
//
// init
void AP_MotorsHeli::init(motor_frame_class frame_class, motor_frame_type frame_type)
{
// set update rate
set_update_rate(_speed_hz);
// load boot-up servo test cycles into counter to be consumed
_servo_test_cycle_counter = _servo_test;
// ensure inputs are not passed through to servos on start-up
_servo_mode = SERVO_CONTROL_MODE_AUTOMATED;
// initialise radio passthrough for collective to middle
_throttle_radio_passthrough = 0.5f;
// initialise Servo/PWM ranges and endpoints
if (!init_outputs()) {
// don't set initialised_ok
return;
}
// calculate all scalars
calculate_scalars();
// record successful initialisation if what we setup was the desired frame_class
_flags.initialised_ok = (frame_class == MOTOR_FRAME_HELI);
}
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
void AP_MotorsHeli::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type)
{
_flags.initialised_ok = (frame_class == MOTOR_FRAME_HELI);
}
// output_min - sets servos to neutral point with motors stopped
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_actuators(0.0f,0.0f,0.5f,0.0f);
update_motor_control(ROTOR_CONTROL_STOP);
// override limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
}
// output - sends commands to the servos
void AP_MotorsHeli::output()
{
// update throttle filter
update_throttle_filter();
if (_flags.armed) {
calculate_armed_scalars();
if (!_flags.interlock) {
output_armed_zero_throttle();
} else {
output_armed_stabilizing();
}
} else {
output_disarmed();
}
};
// sends commands to the motors
void AP_MotorsHeli::output_armed_stabilizing()
{
// if manual override active after arming, deactivate it and reinitialize servos
if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) {
reset_flight_controls();
}
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
update_motor_control(ROTOR_CONTROL_ACTIVE);
}
// output_armed_zero_throttle - sends commands to the motors
void AP_MotorsHeli::output_armed_zero_throttle()
{
// if manual override active after arming, deactivate it and reinitialize servos
if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) {
reset_flight_controls();
}
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
update_motor_control(ROTOR_CONTROL_IDLE);
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
if (_servo_test_cycle_counter > 0){
// perform boot-up servo test cycle if enabled
servo_test();
} else {
// manual override (i.e. when setting up swash)
switch (_servo_mode) {
case SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH:
// pass pilot commands straight through to swash
_roll_in = _roll_radio_passthrough;
_pitch_in = _pitch_radio_passthrough;
_throttle_filter.reset(_throttle_radio_passthrough);
_yaw_in = _yaw_radio_passthrough;
break;
case SERVO_CONTROL_MODE_MANUAL_CENTER:
// fixate mid collective
_roll_in = 0.0f;
_pitch_in = 0.0f;
_throttle_filter.reset(_collective_mid_pct);
_yaw_in = 0.0f;
break;
case SERVO_CONTROL_MODE_MANUAL_MAX:
// fixate max collective
_roll_in = 0.0f;
_pitch_in = 0.0f;
_throttle_filter.reset(1.0f);
_yaw_in = 1.0f;
break;
case SERVO_CONTROL_MODE_MANUAL_MIN:
// fixate min collective
_roll_in = 0.0f;
_pitch_in = 0.0f;
_throttle_filter.reset(0.0f);
_yaw_in = -1.0f;
break;
case SERVO_CONTROL_MODE_MANUAL_OSCILLATE:
// use servo_test function from child classes
servo_test();
break;
default:
// no manual override
break;
}
}
// ensure swash servo endpoints haven't been moved
init_outputs();
// continuously recalculate scalars to allow setup
calculate_scalars();
// helicopters always run stabilizing flight controls
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
update_motor_control(ROTOR_CONTROL_STOP);
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli::parameter_check(bool display_msg) const
{
// returns false if _rsc_setpoint is not higher than _rsc_critical as this would not allow rotor_runup_complete to ever return true
if (_rsc_critical >= _rsc_setpoint) {
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_CRITICAL too large");
}
return false;
}
// returns false if RSC Mode is not set to a valid control mode
if (_rsc_mode <= (int8_t)ROTOR_CONTROL_MODE_DISABLED || _rsc_mode > (int8_t)ROTOR_CONTROL_MODE_CLOSED_LOOP_POWER_OUTPUT) {
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_MODE invalid");
}
return false;
}
// returns false if RSC Runup Time is less than Ramp time as this could cause undesired behaviour of rotor speed estimate
if (_rsc_runup_time <= _rsc_ramp_time){
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RUNUP_TIME too small");
}
return false;
}
// returns false if idle output is higher than critical rotor speed as this could block runup_complete from going false
if ( _rsc_idle_output >= _rsc_critical){
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_RSC_IDLE too large");
}
return false;
}
// all other cases parameters are OK
return true;
}
// reset_swash_servo
void AP_MotorsHeli::reset_swash_servo(SRV_Channel *servo)
{
servo->set_range(1000);
// swash servos always use full endpoints as restricting them would lead to scaling errors
servo->set_output_min(1000);
servo->set_output_max(2000);
}
// update the throttle input filter
void AP_MotorsHeli::update_throttle_filter()
{
_throttle_filter.apply(_throttle_in, 1.0f/_loop_rate);
// constrain filtered throttle
if (_throttle_filter.get() < 0.0f) {
_throttle_filter.reset(0.0f);
}
if (_throttle_filter.get() > 1.0f) {
_throttle_filter.reset(1.0f);
}
}
// reset_flight_controls - resets all controls and scalars to flight status
void AP_MotorsHeli::reset_flight_controls()
{
_servo_mode = SERVO_CONTROL_MODE_AUTOMATED;
init_outputs();
calculate_scalars();
}