/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include #include #include #include "Util.h" #include #include "RCOutput.h" #include "UARTDriver.h" #include "hwdef/common/stm32_util.h" #include "hwdef/common/watchdog.h" #include "hwdef/common/flash.h" #include #include #include "sdcard.h" #include "shared_dma.h" #if defined(HAL_PWM_ALARM) || HAL_DSHOT_ALARM || HAL_CANMANAGER_ENABLED || HAL_USE_PWM == TRUE #include #endif #if HAL_ENABLE_SAVE_PERSISTENT_PARAMS #include #endif #ifndef HAL_BOOTLOADER_BUILD #include #endif #if HAL_WITH_IO_MCU #include #include extern AP_IOMCU iomcu; #endif extern const AP_HAL::HAL& hal; using namespace ChibiOS; #if CH_CFG_USE_HEAP == TRUE /** how much free memory do we have in bytes. */ uint32_t Util::available_memory(void) { // from malloc.c in hwdef return mem_available(); } /* Special Allocation Routines */ void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type) { if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) { return malloc_dma(size); } else if (mem_type == AP_HAL::Util::MEM_FAST) { return malloc_fastmem(size); } else { return calloc(1, size); } } void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type) { if (ptr != NULL) { free(ptr); } } #ifdef ENABLE_HEAP void *Util::allocate_heap_memory(size_t size) { memory_heap_t *heap = (memory_heap_t *)malloc(size + sizeof(memory_heap_t)); if (heap == nullptr) { return nullptr; } chHeapObjectInit(heap, heap + 1U, size); return heap; } /* realloc implementation thanks to wolfssl, used by AP_Scripting */ void *Util::std_realloc(void *addr, size_t size) { if (size == 0) { free(addr); return nullptr; } if (addr == nullptr) { return malloc(size); } void *new_mem = malloc(size); if (new_mem != nullptr) { memcpy(new_mem, addr, chHeapGetSize(addr) > size ? size : chHeapGetSize(addr)); free(addr); } return new_mem; } void *Util::heap_realloc(void *heap, void *ptr, size_t new_size) { if (heap == nullptr) { return nullptr; } if (new_size == 0) { if (ptr != nullptr) { chHeapFree(ptr); } return nullptr; } if (ptr == nullptr) { return chHeapAlloc((memory_heap_t *)heap, new_size); } void *new_mem = chHeapAlloc((memory_heap_t *)heap, new_size); if (new_mem != nullptr) { memcpy(new_mem, ptr, chHeapGetSize(ptr) > new_size ? new_size : chHeapGetSize(ptr)); chHeapFree(ptr); } return new_mem; } #endif // ENABLE_HEAP #endif // CH_CFG_USE_HEAP /* get safety switch state */ Util::safety_state Util::safety_switch_state(void) { #if HAL_USE_PWM == TRUE return ((RCOutput *)hal.rcout)->_safety_switch_state(); #else return SAFETY_NONE; #endif } #ifdef HAL_PWM_ALARM struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = HAL_PWM_ALARM; #elif HAL_USE_PWM == TRUE struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = {}; #endif uint8_t Util::_toneAlarm_types = 0; bool Util::toneAlarm_init(uint8_t types) { #ifdef HAL_PWM_ALARM _toneAlarm_pwm_group.pwm_cfg.period = 1000; pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg); #endif _toneAlarm_types = types; #if HAL_USE_PWM != TRUE && !HAL_DSHOT_ALARM && !HAL_CANMANAGER_ENABLED // Nothing to do return false; #else return true; #endif } #if HAL_USE_PWM == TRUE bool Util::toneAlarm_init(const PWMConfig& pwm_cfg, PWMDriver* pwm_drv, pwmchannel_t chan, bool active_high) { #ifdef HAL_PWM_ALARM pwmStop(_toneAlarm_pwm_group.pwm_drv); #endif _toneAlarm_pwm_group.pwm_cfg = pwm_cfg; _toneAlarm_pwm_group.pwm_drv = pwm_drv; _toneAlarm_pwm_group.pwm_cfg.period = 1000; _toneAlarm_pwm_group.pwm_cfg.channels[chan].mode = active_high ? PWM_OUTPUT_ACTIVE_HIGH : PWM_OUTPUT_ACTIVE_LOW; _toneAlarm_pwm_group.chan = chan; pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg); return true; } #endif void Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms) { #if HAL_USE_PWM == TRUE if (_toneAlarm_pwm_group.pwm_drv != nullptr) { if (is_zero(frequency) || is_zero(volume)) { pwmDisableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan); } else { pwmChangePeriod(_toneAlarm_pwm_group.pwm_drv, roundf(_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)); pwmEnableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan, roundf(volume*_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)/2); } } #endif // HAL_USE_PWM #if HAL_DSHOT_ALARM // don't play the motors while flying if (!(_toneAlarm_types & AP_Notify::Notify_Buzz_DShot) || get_soft_armed() || hal.rcout->get_dshot_esc_type() != RCOutput::DSHOT_ESC_BLHELI) { return; } if (is_zero(frequency)) { // silence hal.rcout->send_dshot_command(RCOutput::DSHOT_RESET, RCOutput::ALL_CHANNELS, duration_ms); } else if (frequency < 1047) { // C hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP1, RCOutput::ALL_CHANNELS, duration_ms); } else if (frequency < 1175) { // D hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP2, RCOutput::ALL_CHANNELS, duration_ms); } else if (frequency < 1319) { // E hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP3, RCOutput::ALL_CHANNELS, duration_ms); } else if (frequency < 1397) { // F hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP4, RCOutput::ALL_CHANNELS, duration_ms); } else { // G+ hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP5, RCOutput::ALL_CHANNELS, duration_ms); } #endif // HAL_DSHOT_ALARM } /* set HW RTC in UTC microseconds */ void Util::set_hw_rtc(uint64_t time_utc_usec) { stm32_set_utc_usec(time_utc_usec); } /* get system clock in UTC microseconds */ uint64_t Util::get_hw_rtc() const { return stm32_get_utc_usec(); } #if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT) #ifndef HAL_BOOTLOADER_BUILD #include #if HAL_GCS_ENABLED #define Debug(fmt, args ...) do { gcs().send_text(MAV_SEVERITY_INFO, fmt, ## args); } while (0) #endif // HAL_GCS_ENABLED #endif // ifndef HAL_BOOT_LOADER_BUILD #ifndef Debug #define Debug(fmt, args ...) do { hal.console->printf(fmt, ## args); } while (0) #endif Util::FlashBootloader Util::flash_bootloader() { uint32_t fw_size; const char *fw_name = "bootloader.bin"; EXPECT_DELAY_MS(11000); const uint8_t *fw = AP_ROMFS::find_decompress(fw_name, fw_size); if (!fw) { Debug("failed to find %s\n", fw_name); return FlashBootloader::NOT_AVAILABLE; } // make sure size is multiple of 32 fw_size = (fw_size + 31U) & ~31U; bool uptodate = true; const uint32_t addr = hal.flash->getpageaddr(0); if (memcmp(fw, (const void*)addr, fw_size) != 0) { uptodate = false; } #if HAL_ENABLE_SAVE_PERSISTENT_PARAMS // see if we should store persistent parameters along with the // bootloader. We only do this on boards using a single sector for // the bootloader. The persistent parameters are stored as text at // the end of the sector const int32_t space_available = hal.flash->getpagesize(0) - int32_t(fw_size); ExpandingString persistent_params {}, old_persistent_params {}; if (get_persistent_params(persistent_params) && space_available >= persistent_params.get_length() && (!load_persistent_params(old_persistent_params) || strcmp(persistent_params.get_string(), old_persistent_params.get_string()) != 0)) { // persistent parameters have changed, we will update // bootloader to allow storage of the params uptodate = false; } #endif if (uptodate) { Debug("Bootloader up-to-date\n"); AP_ROMFS::free(fw); return FlashBootloader::NO_CHANGE; } Debug("Erasing\n"); uint32_t erased_size = 0; uint8_t erase_page = 0; while (erased_size < fw_size) { uint32_t page_size = hal.flash->getpagesize(erase_page); if (page_size == 0) { AP_ROMFS::free(fw); return FlashBootloader::FAIL; } hal.scheduler->expect_delay_ms(1000); if (!hal.flash->erasepage(erase_page)) { Debug("Erase %u failed\n", erase_page); AP_ROMFS::free(fw); return FlashBootloader::FAIL; } erased_size += page_size; erase_page++; } Debug("Flashing %s @%08x\n", fw_name, (unsigned int)addr); const uint8_t max_attempts = 10; hal.flash->keep_unlocked(true); for (uint8_t i=0; iexpect_delay_ms(1000); bool ok = hal.flash->write(addr, fw, fw_size); if (!ok) { Debug("Flash failed! (attempt=%u/%u)\n", i+1, max_attempts); hal.scheduler->delay(100); continue; } Debug("Flash OK\n"); #if HAL_ENABLE_SAVE_PERSISTENT_PARAMS if (persistent_params.get_length()) { const uint32_t ofs = hal.flash->getpagesize(0) - persistent_params.get_length(); hal.flash->write(addr+ofs, persistent_params.get_string(), persistent_params.get_length()); } #endif hal.flash->keep_unlocked(false); AP_ROMFS::free(fw); return FlashBootloader::OK; } hal.flash->keep_unlocked(false); Debug("Flash failed after %u attempts\n", max_attempts); AP_ROMFS::free(fw); return FlashBootloader::FAIL; } #endif // !HAL_NO_FLASH_SUPPORT && !HAL_NO_ROMFS_SUPPORT /* display system identifer - board type and serial number */ bool Util::get_system_id(char buf[40]) { uint8_t serialid[12]; char board_name[14]; memcpy(serialid, (const void *)UDID_START, 12); strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13); board_name[13] = 0; // this format is chosen to match the format used by HAL_PX4 snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X", board_name, (unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0], (unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4], (unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]); buf[39] = 0; return true; } bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len) { len = MIN(12, len); memcpy(buf, (const void *)UDID_START, len); return true; } // return true if the reason for the reboot was a watchdog reset bool Util::was_watchdog_reset() const { return stm32_was_watchdog_reset(); } #if CH_DBG_ENABLE_STACK_CHECK == TRUE && !defined(HAL_BOOTLOADER_BUILD) /* display stack usage as text buffer for @SYS/threads.txt */ __RAMFUNC__ void Util::thread_info(ExpandingString &str) { #if HAL_ENABLE_THREAD_STATISTICS uint64_t cumulative_cycles = ch.kernel_stats.m_crit_isr.cumulative; for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) { if (tp->stats.best > 0) { // not run cumulative_cycles += (uint64_t)tp->stats.cumulative; } } #endif // a header to allow for machine parsers to determine format const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__); #if HAL_ENABLE_THREAD_STATISTICS str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u LOAD=%4.1f%%\n", &__main_stack_base__, unsigned(stack_free(&__main_stack_base__)), unsigned(isr_stack_size), 100.0f * float(ch.kernel_stats.m_crit_isr.cumulative) / float(cumulative_cycles)); ch.kernel_stats.m_crit_isr.cumulative = 0U; #else str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u\n", &__main_stack_base__, unsigned(stack_free(&__main_stack_base__)), unsigned(isr_stack_size)); #endif for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) { uint32_t total_stack; if (tp->wabase == (void*)&__main_thread_stack_base__) { // main thread has its stack separated from the thread context total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__); } else { // all other threads have their thread context pointer // above the stack top total_stack = uint32_t(tp) - uint32_t(tp->wabase); } #if HAL_ENABLE_THREAD_STATISTICS time_measurement_t stats = tp->stats; if (tp->stats.best > 0) { // not run str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u LOAD=%4.1f%%%s\n", tp->name, unsigned(tp->realprio), tp->wabase, unsigned(stack_free(tp->wabase)), unsigned(total_stack), 100.0f * float(stats.cumulative) / float(cumulative_cycles), // more than a loop slice is bad for everyone else, warn on // more than a 200Hz slice so that only the worst offenders are identified // also don't do this for the main or idle threads tp != chThdGetSelfX() && unsigned(RTC2US(STM32_HSECLK, stats.worst)) > 5000 && tp != get_main_thread() && tp->realprio != 1 ? "*" : ""); } else { str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u\n", tp->name, unsigned(tp->realprio), tp->wabase, unsigned(stack_free(tp->wabase)), unsigned(total_stack)); } // Giovanni thinks this is dangerous, but we can't get useable data without it if (tp != chThdGetSelfX()) { chTMObjectInit(&tp->stats); // reset counters to zero } else { tp->stats.cumulative = 0U; } #else str.printf("%-13.13s PRI=%3u sp=%p STACK=%u/%u\n", tp->name, unsigned(tp->realprio), tp->wabase, unsigned(stack_free(tp->wabase)), unsigned(total_stack)); #endif } } #endif // CH_DBG_ENABLE_STACK_CHECK == TRUE #if CH_CFG_USE_SEMAPHORES // request information on dma contention void Util::dma_info(ExpandingString &str) { #ifndef HAL_NO_SHARED_DMA ChibiOS::Shared_DMA::dma_info(str); #endif } #endif #if CH_CFG_USE_HEAP == TRUE /* return information on heap usage */ void Util::mem_info(ExpandingString &str) { memory_heap_t *heaps; const struct memory_region *regions; uint8_t num_heaps = malloc_get_heaps(&heaps, ®ions); str.printf("MemInfoV1\n"); for (uint8_t i=0; iget_persistent_params(str); } #endif if (str.has_failed_allocation() || str.get_length() <= strlen(persistent_header)) { // no data return false; } // ensure that the length is a multiple of 32 to meet flash alignment requirements while (!str.has_failed_allocation() && str.get_length() % 32 != 0) { str.append(" ", 1); } return !str.has_failed_allocation(); } /* load a set of persistent parameters in string form from the bootloader sector */ bool Util::load_persistent_params(ExpandingString &str) const { const uint32_t addr = hal.flash->getpageaddr(0); const uint32_t size = hal.flash->getpagesize(0); const char *s = (const char *)memmem((void*)addr, size, persistent_header, strlen(persistent_header)); if (s) { str.append(s, (addr+size) - uint32_t(s)); return !str.has_failed_allocation(); } return false; } /* apply persistent parameters from the bootloader sector to AP_Param */ void Util::apply_persistent_params(void) const { ExpandingString str {}; if (!load_persistent_params(str)) { return; } char *s = str.get_writeable_string(); char *saveptr; s += strlen(persistent_header); uint32_t count = 0; uint32_t errors = 0; for (char *p = strtok_r(s, "\n", &saveptr); p; p = strtok_r(nullptr, "\n", &saveptr)) { char *eq = strchr(p, int('=')); if (eq) { *eq = 0; const char *pname = p; const float value = strtof(eq+1, NULL); if (AP_Param::set_default_by_name(pname, value)) { count++; /* we now have a special case for INS_ACC*_ID. To support factory accelerometer calibration we need to do a save() on the ID parameters if they are not already in storage. This is needed as AP_InertialSensor determines if a calibration has been done by whether the IDs are configured in storage */ if (strncmp(pname, "INS_ACC", 7) == 0 && strcmp(pname+strlen(pname)-3, "_ID") == 0) { enum ap_var_type ptype; AP_Int32 *ap = (AP_Int32 *)AP_Param::find(pname, &ptype); if (ap && ptype == AP_PARAM_INT32) { if (ap->get() != int32_t(value)) { // the accelerometer ID has changed since // this persistent data was saved. Stop // loading persistent parameters as it is // no longer valid for this board. This // can happen if the user has set // parameters to prevent loading of // specific IMU drivers, or if they have // setup an external IMU errors++; break; } if (!ap->configured_in_storage()) { ap->save(); } } } } } } if (count) { AP_Param::invalidate_count(); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loaded %u persistent parameters (%u errors)", unsigned(count), unsigned(errors)); } } #endif // HAL_ENABLE_SAVE_PERSISTENT_PARAMS #if HAL_WITH_IO_MCU extern ChibiOS::UARTDriver uart_io; #endif #if HAL_UART_STATS_ENABLED // request information on uart I/O void Util::uart_info(ExpandingString &str) { // a header to allow for machine parsers to determine format str.printf("UARTV1\n"); for (uint8_t i = 0; i < HAL_UART_NUM_SERIAL_PORTS; i++) { auto *uart = hal.serial(i); if (uart) { str.printf("SERIAL%u ", i); uart->uart_info(str); } } #if HAL_WITH_IO_MCU str.printf("IOMCU "); uart_io.uart_info(str); #endif } #endif // request information on uart I/O #if HAL_USE_PWM == TRUE void Util::timer_info(ExpandingString &str) { hal.rcout->timer_info(str); } #endif /** * This method will generate random values with set size. It will fall back to AP_Math's get_random16() * if True RNG fails or enough entropy is not present. */ bool Util::get_random_vals(uint8_t* data, size_t size) { #if HAL_USE_HW_RNG && defined(RNG) size_t true_random_vals = stm32_rand_generate_nonblocking(data, size); if (true_random_vals == size) { return true; } else { if (!(true_random_vals % 2)) { data[true_random_vals] = (uint8_t)(get_random16() & 0xFF); true_random_vals++; } while(true_random_vals < size) { uint16_t val = get_random16(); memcpy(&data[true_random_vals], &val, sizeof(uint16_t)); true_random_vals+=sizeof(uint16_t); } } return true; #else return false; #endif } /** * This method will generate true random values with set size. This method will block for set amount * of true random numbers to be generated, the timeout specifies the maximum amount of time to wait * for the call to finish. */ bool Util::get_true_random_vals(uint8_t* data, size_t size, uint32_t timeout_us) { #if HAL_USE_HW_RNG && defined(RNG) if (stm32_rand_generate_blocking(data, size, timeout_us)) { return true; } else { return false; } #else return false; #endif } /* log info on stack usage. Called at 1Hz by logging thread, logs next thread on each call */ void Util::log_stack_info(void) { #if !defined(HAL_BOOTLOADER_BUILD) && HAL_LOGGING_ENABLED static thread_t *last_tp; static uint8_t thread_id; thread_t *tp = last_tp; if (tp == nullptr) { tp = chRegFirstThread(); thread_id = 0; } else { tp = chRegNextThread(last_tp); thread_id++; } struct log_STAK pkt = { LOG_PACKET_HEADER_INIT(LOG_STAK_MSG), time_us : AP_HAL::micros64(), }; if (tp == nullptr) { pkt.thread_id = 255; pkt.priority = 255; const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__); pkt.stack_total = isr_stack_size; pkt.stack_free = stack_free(&__main_stack_base__); strncpy_noterm(pkt.name, "ISR", sizeof(pkt.name)); } else { if (tp->wabase == (void*)&__main_thread_stack_base__) { // main thread has its stack separated from the thread context pkt.stack_total = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__); } else { // all other threads have their thread context pointer // above the stack top pkt.stack_total = uint32_t(tp) - uint32_t(tp->wabase); } pkt.thread_id = thread_id; pkt.priority = tp->realprio, pkt.stack_free = stack_free(tp->wabase); strncpy_noterm(pkt.name, tp->name, sizeof(pkt.name)); } AP::logger().WriteBlock(&pkt, sizeof(pkt)); last_tp = tp; #endif } #if !defined(HAL_BOOTLOADER_BUILD) size_t Util::last_crash_dump_size() const { #if HAL_GCS_ENABLED && HAL_CRASHDUMP_ENABLE // get dump size uint32_t size = stm32_crash_dump_size(); char* dump_start = (char*)stm32_crash_dump_addr(); if (!(dump_start[0] == 0x63 && dump_start[1] == 0x43)) { // there's no valid Crash Dump return 0; } if (size == 0xFFFFFFFF) { GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Crash Dump incomplete, dumping what we got!"); size = stm32_crash_dump_max_size(); } return size; #endif return 0; } void* Util::last_crash_dump_ptr() const { #if HAL_GCS_ENABLED && HAL_CRASHDUMP_ENABLE if (last_crash_dump_size() == 0) { return nullptr; } return (void*)stm32_crash_dump_addr(); #else return nullptr; #endif } #endif // HAL_BOOTLOADER_BUILD // set armed state void Util::set_soft_armed(const bool b) { AP_HAL::Util::set_soft_armed(b); #ifdef HAL_GPIO_PIN_nARMED palWriteLine(HAL_GPIO_PIN_nARMED, !b); #endif }