/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_Circle::var_info[] PROGMEM = { // @Param: RADIUS // @DisplayName: Circle Radius // @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode // @Units: cm // @Range: 0 10000 // @Increment: 100 // @User: Standard AP_GROUPINFO("RADIUS", 0, AC_Circle, _radius, AC_CIRCLE_RADIUS_DEFAULT), // @Param: RATE // @DisplayName: Circle rate // @Description: Circle mode's turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise // @Units: deg/s // @Range: -90 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("RATE", 1, AC_Circle, _rate, AC_CIRCLE_RATE_DEFAULT), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_Circle::AC_Circle(const AP_InertialNav& inav, const AP_AHRS& ahrs, AC_PosControl& pos_control) : _inav(inav), _ahrs(ahrs), _pos_control(pos_control), _last_update(0), _angle(0) { AP_Param::setup_object_defaults(this, var_info); } /// init - initialise circle controller setting center specifically void AC_Circle::init(const Vector3f& center) { _center = center; // To-Do: set target position, angle, etc so that copter begins circle from closest point to stopping point _pos_control.set_pos_target(_inav.get_position()); // To-Do: set _pos_control speed and accel // calculate velocities calc_velocities(); // set start angle from position init_start_angle(false); } /// init - initialise circle controller setting center using stopping point and projecting out based on the copter's heading void AC_Circle::init() { Vector3f stopping_point; // get reasonable stopping point _pos_control.get_stopping_point_xy(stopping_point); _pos_control.get_stopping_point_z(stopping_point); // set circle center to circle_radius ahead of stopping point _center.x = stopping_point.x + _radius * _ahrs.cos_yaw(); _center.y = stopping_point.y + _radius * _ahrs.sin_yaw(); _center.z = stopping_point.z; // update pos_control target to stopping point _pos_control.set_pos_target(stopping_point); // calculate velocities calc_velocities(); // set starting angle from vehicle heading init_start_angle(true); } /// update - update circle controller void AC_Circle::update() { // calculate dt uint32_t now = hal.scheduler->millis(); float dt = (now - _last_update) / 1000.0f; // update circle position at 10hz if (dt > 0.095f) { // double check dt is reasonable if (dt >= 1.0f) { dt = 0.0; } // capture time since last iteration _last_update = now; // ramp up angular velocity to maximum if (_rate >= 0) { if (_angular_vel < _angular_vel_max) { _angular_vel += _angular_accel * dt; _angular_vel = constrain_float(_angular_vel, 0, _angular_vel_max); } }else{ if (_angular_vel > _angular_vel_max) { _angular_vel += _angular_accel * dt; _angular_vel = constrain_float(_angular_vel, _angular_vel_max, 0); } } // update the target angle and total angle traveled float angle_change = _angular_vel * dt; _angle += angle_change; _angle = wrap_PI(_angle); _angle_total += angle_change; // if the circle_radius is zero we are doing panorama so no need to update loiter target if (_radius != 0.0) { // calculate target position Vector3f target; target.x = _center.x + _radius * cosf(-_angle); target.y = _center.y - _radius * sinf(-_angle); target.z = _pos_control.get_alt_target(); // update position controller target _pos_control.set_pos_target(target); // heading is 180 deg from vehicles target position around circle _yaw = wrap_PI(_angle-PI) * AC_CIRCLE_DEGX100; }else{ // set target position to center Vector3f target; target.x = _center.x; target.y = _center.y; target.z = _pos_control.get_alt_target(); // update position controller target _pos_control.set_pos_target(target); // heading is same as _angle but converted to centi-degrees _yaw = _angle * AC_CIRCLE_DEGX100; } // trigger position controller on next update _pos_control.trigger_xy(); } // run loiter's position to velocity step _pos_control.update_xy_controller(false); } // get_closest_point_on_circle - returns closest point on the circle // circle's center should already have been set // closest point on the circle will be placed in result // result's altitude (i.e. z) will be set to the circle_center's altitude // if vehicle is at the center of the circle, the edge directly behind vehicle will be returned void AC_Circle::get_closest_point_on_circle(Vector3f &result) { // return center if radius is zero if (_radius <= 0) { result = _center; return; } // get current position const Vector3f &curr_pos = _inav.get_position(); // calc vector from current location to circle center Vector2f vec; // vector from circle center to current location vec.x = (curr_pos.x - _center.x); vec.y = (curr_pos.y - _center.y); float dist = pythagorous2(vec.x, vec.y); // if current location is exactly at the center of the circle return edge directly behind vehicle if (dist == 0) { result.x = _center.x - _radius * _ahrs.cos_yaw(); result.y = _center.y - _radius * _ahrs.sin_yaw(); result.z = _center.z; return; } // calculate closest point on edge of circle result.x = _center.x + vec.x / dist * _radius; result.y = _center.y + vec.y / dist * _radius; result.z = _center.z; } // calc_velocities - calculate angular velocity max and acceleration based on radius and rate // this should be called whenever the radius or rate are changed // initialises the yaw and current position around the circle void AC_Circle::calc_velocities() { // if we are doing a panorama set the circle_angle to the current heading if (_radius <= 0) { _angular_vel_max = ToRad(_rate); _angular_accel = _angular_vel_max; // reach maximum yaw velocity in 1 second }else{ // set starting angle to current heading - 180 degrees _angle = wrap_PI(_ahrs.yaw-PI); // calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle float velocity_max = min(_pos_control.get_speed_xy(), safe_sqrt(0.5f*_pos_control.get_accel_xy()*_radius)); // angular_velocity in radians per second _angular_vel_max = velocity_max/_radius; _angular_vel_max = constrain_float(ToRad(_rate),-_angular_vel_max,_angular_vel_max); // angular_velocity in radians per second _angular_accel = _pos_control.get_accel_xy()/_radius; if (_rate < 0.0f) { _angular_accel = -_angular_accel; } } // initialise angular velocity _angular_vel = 0; } // init_start_angle - sets the starting angle around the circle and initialises the angle_total // if use_heading is true the vehicle's heading will be used to init the angle causing minimum yaw movement // if use_heading is false the vehicle's position from the center will be used to initialise the angle void AC_Circle::init_start_angle(bool use_heading) { // initialise angle total _angle_total = 0; // if the radius is zero we are doing panorama so init angle to the current heading if (_radius <= 0) { _angle = _ahrs.yaw; return; } // if use_heading is true if (use_heading) { _angle = wrap_PI(_ahrs.yaw-PI); } else { // if we are exactly at the center of the circle, init angle to directly behind vehicle (so vehicle will backup but not change heading) const Vector3f &curr_pos = _inav.get_position(); if (curr_pos.x == _center.x && curr_pos.y == _center.y) { _angle = wrap_PI(_ahrs.yaw-PI); } else { // get bearing from circle center to vehicle in radians float bearing_rad = ToRad(90) + atan2f(-(curr_pos.x-_center.x), curr_pos.y-_center.y); _angle = wrap_PI(bearing_rad); } } }