/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include "AP_Compass_MAG3110.h" extern const AP_HAL::HAL &hal; /* EN: at first glance, the magnetometer MAG3110 consists only of flaws:     * noisy, with a bad characteristic, with very large difference on axes     * it can't be calibrated in any way, you just have to believe what he has been measured     * There are no adjustments and settings, it just sends data with some unknown sensitivity. Or does not sends :)     * One and a half setup registers, in which only the frequency of operation and the number of averagings are specified          This is a device, wooden to the waist. But of all these shortcomings, its sole and basic virtue arises:     * He will never comes buggy or clevers.          And since we do not need much from a magnetometer and it is required to calibrate the Ardupilot itself, the device     appears in a completely new light - as a reliable info "north is there." What we really need. RUS: на первый взгляд, магнитометр MAG3110 состоит из одних лишь недостатков: * шумный, с кривой характеристикой, * никак не калибруется, приходится просто верить тому что он намерял * нет никаких регулировок и настроек, он просто выдает данные с некой неизвестной чувствительностью. Или не выдает :) * полтора настроечных регистра, в которых задается только частота работы и количество усреднений Такой вот девайс, по пояс деревянный. Но из всех этих недостатков проистекает его единственное и основное достоинство: * он никогда не глючит и не умничает. А так как нам от магнитометра особо много и не требуется, а калибровать Ардупилот и сам умеет, то девайс предстает в совсем новом свете - как надежный указатель "север там". Что нам собственно и надо. */ /* the vector length filter can help with noise on the bus, but may interfere with higher level processing. It should really be moved into the AP_Compass_backend code, with a parameter to enable it. */ #ifndef MAG3110_ENABLE_LEN_FILTER #define MAG3110_ENABLE_LEN_FILTER 0 #endif // Registers #define MAG3110_MAG_REG_STATUS 0x00 #define MAG3110_MAG_REG_HXL 0x01 #define MAG3110_MAG_REG_HXH 0x02 #define MAG3110_MAG_REG_HYL 0x03 #define MAG3110_MAG_REG_HYH 0x04 #define MAG3110_MAG_REG_HZL 0x05 #define MAG3110_MAG_REG_HZH 0x06 #define MAG3110_MAG_REG_WHO_AM_I 0x07 #define MAG3110_MAG_REG_SYSMODE 0x08 #define MAG3110_MAG_REG_CTRL_REG1 0x10 #define MAG3110_MAG_REG_CTRL_REG2 0x11 #define BIT_STATUS_REG_DATA_READY (1 << 3) AP_Compass_MAG3110::AP_Compass_MAG3110(AP_HAL::OwnPtr dev) : _dev(std::move(dev)) { } AP_Compass_Backend *AP_Compass_MAG3110::probe(AP_HAL::OwnPtr dev, enum Rotation rotation) { if (!dev) { return nullptr; } AP_Compass_MAG3110 *sensor = new AP_Compass_MAG3110(std::move(dev)); if (!sensor || !sensor->init(rotation)) { delete sensor; return nullptr; } return sensor; } bool AP_Compass_MAG3110::init(enum Rotation rotation) { bool success = _hardware_init(); if (!success) { return false; } _initialised = true; // perform an initial read read(); /* register the compass instance in the frontend */ _compass_instance = register_compass(); set_rotation(_compass_instance, rotation); _dev->set_device_type(DEVTYPE_MAG3110); set_dev_id(_compass_instance, _dev->get_bus_id()); set_external(_compass_instance, true); // read at 75Hz _dev->register_periodic_callback(13333, FUNCTOR_BIND_MEMBER(&AP_Compass_MAG3110::_update, void)); return true; } bool AP_Compass_MAG3110::_hardware_init() { AP_HAL::Semaphore *bus_sem = _dev->get_semaphore(); if (!bus_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { AP_HAL::panic("MAG3110: Unable to get semaphore"); } // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); bool ret=false; _dev->set_retries(5); uint8_t sig = 0; bool ack = _dev->read_registers(MAG3110_MAG_REG_WHO_AM_I, &sig, 1); if (!ack || sig != 0xC4) goto exit; ack = _dev->write_register(MAG3110_MAG_REG_CTRL_REG1, 0x01); // active mode 80 Hz ODR with OSR = 1 if (!ack) goto exit; hal.scheduler->delay(20); ack = _dev->write_register(MAG3110_MAG_REG_CTRL_REG2, 0xA0); // AUTO_MRST_EN + RAW if (!ack) goto exit; ret = true; _dev->set_retries(3); printf("MAG3110 found on bus 0x%x\n", (uint16_t)_dev->get_bus_id()); exit: _dev->set_speed(AP_HAL::Device::SPEED_HIGH); bus_sem->give(); return ret; } // Read Sensor data bool AP_Compass_MAG3110::_read_sample() { { uint8_t status; bool ack = _dev->read_registers(MAG3110_MAG_REG_STATUS, &status, 1); if (!ack || (status & BIT_STATUS_REG_DATA_READY) == 0) { return false; } } uint8_t buf[6]; bool ack = _dev->read_registers(MAG3110_MAG_REG_HXL, buf, 6); if (!ack) { return false; } _mag_x = (int16_t)(buf[0] << 8 | buf[1]); _mag_y = (int16_t)(buf[2] << 8 | buf[3]); _mag_z = (int16_t)(buf[4] << 8 | buf[5]); return true; } #define MAG_SCALE (1.0f/10000 / 0.0001f * 1000) // 1 Tesla full scale of +-10000, 1 Gauss = 0,0001 Tesla, library needs milliGauss void AP_Compass_MAG3110::_update() { if (!_read_sample()) { return; } Vector3f raw_field = Vector3f((float)_mag_x, (float)_mag_y, (float)_mag_z) * MAG_SCALE; // rotate raw_field from sensor frame to body frame rotate_field(raw_field, _compass_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, _compass_instance); // correct raw_field for known errors correct_field(raw_field, _compass_instance); if (!field_ok(raw_field)) { return; } if (_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { _mag_x_accum += raw_field.x; _mag_y_accum += raw_field.y; _mag_z_accum += raw_field.z; _accum_count++; if (_accum_count == 10) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count /= 2; } _sem->give(); } } // Read Sensor data void AP_Compass_MAG3110::read() { if (!_initialised) { return; } if (!_sem->take_nonblocking()) { return; } if (_accum_count == 0) { /* We're not ready to publish*/ _sem->give(); return; } Vector3f field = Vector3f(_mag_x_accum, _mag_y_accum, _mag_z_accum); field /= _accum_count; _accum_count = 0; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _sem->give(); publish_filtered_field(field, _compass_instance); }