--[[ trajectory tracking aerobatic control See README.md for usage Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller assistance from Paul Riseborough, testing by Henry Wurzburg ]]-- -- setup param block for aerobatics, reserving 30 params beginning with AERO_ local PARAM_TABLE_KEY = 70 local PARAM_TABLE_PREFIX = 'AEROM_' assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table') -- add a parameter and bind it to a variable function bind_add_param(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX .. name) end HGT_P = bind_add_param('HGT_P', 1, 1) HGT_I = bind_add_param('HGT_I', 2, 2) HGT_KE_BIAS = bind_add_param('HGT_KE_ADD', 3, 20) THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80) SPD_P = bind_add_param('SPD_P', 5, 5) SPD_I = bind_add_param('SPD_I', 6, 25) ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3) ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25) AUTO_MIS = bind_add_param('AUTO_MIS', 9, 0) AUTO_RAD = bind_add_param('AUTO_RAD', 10, 40) TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0) ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0) ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8) AEROM_ENTRY_RATE = bind_add_param('ENTRY_RATE', 14, 60) --[[ Aerobatic tricks on a switch support - allows for tricks to be initiated outside AUTO mode --]] -- 2nd param table for tricks on a switch local PARAM_TABLE_KEY2 = 71 local PARAM_TABLE_PREFIX2 = "TRIK" assert(param:add_table(PARAM_TABLE_KEY2, PARAM_TABLE_PREFIX2, 63), 'could not add param table2') -- add a parameter and bind it to a variable in table2 function bind_add_param2(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY2, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX2 .. name) end local TRIK_ENABLE = bind_add_param2("_ENABLE", 1, 0) local TRICKS = nil local TRIK_SEL_FN = nil local TRIK_ACT_FN = nil local TRIK_COUNT = nil local function TrickDef(id, arg1, arg2, arg3, arg4) local self = {} self.id = id self.args = {arg1, arg2, arg3, arg4} return self end -- constrain a value between limits function constrain(v, vmin, vmax) if v < vmin then v = vmin end if v > vmax then v = vmax end return v end if TRIK_ENABLE:get() > 0 then TRIK_SEL_FN = bind_add_param2("_SEL_FN", 2, 301) TRIK_ACT_FN = bind_add_param2("_ACT_FN", 3, 300) TRIK_COUNT = bind_add_param2("_COUNT", 4, 3) TRICKS = {} -- setup parameters for tricks local count = math.floor(constrain(TRIK_COUNT:get(),1,11)) for i = 1, count do local k = 5*i local prefix = string.format("%u", i) TRICKS[i] = TrickDef(bind_add_param2(prefix .. "_ID", k+0, i), bind_add_param2(prefix .. "_ARG1", k+1, 30), bind_add_param2(prefix .. "_ARG2", k+2, 0), bind_add_param2(prefix .. "_ARG3", k+3, 0), bind_add_param2(prefix .. "_ARG4", k+4, 0)) end gcs:send_text(0, string.format("Enabled %u aerobatic tricks", TRIK_COUNT:get())) end local NAV_TAKEOFF = 22 local NAV_WAYPOINT = 16 local NAV_SCRIPT_TIME = 42702 local MODE_AUTO = 10 local LOOP_RATE = 20 local DO_JUMP = 177 local k_throttle = 70 local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM") local last_id = 0 local current_task = nil local path_var = {} function wrap_360(angle) local res = math.fmod(angle, 360.0) if res < 0 then res = res + 360.0 end return res end function wrap_180(angle) local res = wrap_360(angle) if res > 180 then res = res - 360 end return res end function wrap_pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_180(angle_deg) return math.rad(angle_wrapped) end function wrap_2pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_360(angle_deg) return math.rad(angle_wrapped) end -- a PI controller implemented as a Lua object local function PI_controller(kP,kI,iMax) -- the new instance. You can put public variables inside this self -- declaration if you want to local self = {} -- private fields as locals local _kP = kP or 0.0 local _kI = kI or 0.0 local _kD = kD or 0.0 local _iMax = iMax local _last_t = nil local _I = 0 local _P = 0 local _total = 0 local _counter = 0 local _target = 0 local _current = 0 -- update the controller. function self.update(target, current) local now = millis():tofloat() * 0.001 if not _last_t then _last_t = now end local dt = now - _last_t _last_t = now local err = target - current _counter = _counter + 1 local P = _kP * err _I = _I + _kI * err * dt if _iMax then _I = constrain(_I, -_iMax, iMax) end local I = _I local ret = P + I _target = target _current = current _P = P _total = ret return ret end -- reset integrator to an initial value function self.reset(integrator) _I = integrator end function self.set_I(I) _kI = I end function self.set_P(P) _kP = P end function self.set_Imax(Imax) _iMax = Imax end -- log the controller internals function self.log(name, add_total) -- allow for an external addition to total logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total) end -- return the instance return self end local function speed_controller(kP_param,kI_param, kFF_roll_param, kFF_pitch_param, Imax) local self = {} local kFF_roll = kFF_roll_param local kFF_pitch = kFF_pitch_param local PI = PI_controller(kP_param:get(), kI_param:get(), Imax) function self.update(target) local current_speed = ahrs:get_velocity_NED():length() local throttle = PI.update(target, current_speed) throttle = throttle + math.sin(ahrs:get_pitch())*kFF_pitch:get() throttle = throttle + math.abs(math.sin(ahrs:get_roll()))*kFF_roll:get() return throttle end function self.reset() PI.reset(0) local temp_throttle = self.update(ahrs:get_velocity_NED():length()) local current_throttle = SRV_Channels:get_output_scaled(k_throttle) PI.reset(current_throttle-temp_throttle) end return self end local speed_PI = speed_controller(SPD_P, SPD_I, HGT_KE_BIAS, THR_PIT_FF, 100.0) function sgn(x) local eps = 0.000001 if (x > eps) then return 1.0 elseif x < eps then return -1.0 else return 0.0 end end function get_wp_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end function resolve_jump(i) local m = mission:get_item(i) while m:command() == DO_JUMP do i = math.floor(m:param1()) m = mission:get_item(i) end return i end --------Trajectory definitions--------------------- function climbing_circle(t, radius, height, arg3, arg4) local angle = t*math.pi*2 local vec = makeVector3f(radius*math.sin(angle), radius*(1.0-math.cos(angle)), -math.sin(0.5*angle)*height) return vec, 0.0 end function loop(t, radius, bank_angle, arg3, arg4) local num_loops = math.abs(arg3) if(arg3 <= 0.0) then num_loops = 1 end t = num_loops*t*math.pi*2 local vec = makeVector3f(math.sin(t), 0.0, -1.0 + math.cos(t)) return vec:scale(radius), math.rad(bank_angle) end function straight_roll(t, length, num_rolls, arg3, arg4) local vec = makeVector3f(t*length, 0.0, 0.0) return vec, t*num_rolls*2*math.pi end --[[ roll component that goes through a fixed total angle at a fixed roll rate --]] function roll_angle(_angle) local self = {} local angle = _angle function self.get_roll(t) return angle * t end return self end --[[ roll component that banks to _angle over AEROM_ENTRY_RATE degrees/s, then holds that angle, then banks back to zero at AEROM_ENTRY_RATE degrees/s --]] function roll_angle_entry_exit(_angle) local self = {} local angle = _angle local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get() function self.get_roll(t, time_s) local entry_t = entry_s / time_s if entry_t > 0.5 then entry_t = 0.5 end if t < entry_t then return angle * t / entry_t end if t < 1.0 - entry_t then return angle end return (1.0 - ((t - (1.0 - entry_t)) / entry_t)) * angle end return self end --[[ path component that does a straight horizontal line --]] function path_straight(_distance) local self = {} local distance = _distance function self.get_pos(t) return makeVector3f(distance*t, 0, 0) end function self.get_length() return distance end function self.get_final_orientation() return Quaternion() end return self end --[[ path component that does a vertical arc over a given angle --]] function path_vertical_arc(_radius, _angle) local self = {} local radius = _radius local angle = _angle function self.get_pos(t) local t2ang = t * math.rad(angle) return makeVector3f(math.abs(radius)*math.sin(t2ang), 0, -radius*(1.0 - math.cos(t2ang))) end function self.get_length() return math.abs(radius) * 2 * math.pi * math.abs(angle) / 360.0 end function self.get_final_orientation() local q = Quaternion() q:from_axis_angle(makeVector3f(0,1,0), sgn(radius)*math.rad(angle)) return q end return self end --[[ integrate a function, assuming fn takes a time t from 0 to 1 --]] function integrate_length(fn) local total = 0.0 local p = fn(0) for i = 1, 100 do local t = i*0.01 local p2 = fn(t) local dv = p2 - p total = total + dv:length() p = p2 end return total end --[[ path component that does a horizontal arc over a given angle --]] function path_horizontal_arc(_radius, _angle, _height_gain) local self = {} local radius = _radius local angle = _angle local height_gain = _height_gain if height_gain == nil then height_gain = 0 end function self.get_pos(t) local t2ang = t * math.rad(angle) return makeVector3f(math.abs(radius)*math.sin(t2ang), radius*(1.0 - math.cos(t2ang)), -height_gain*t) end function self.get_length() if _height_gain == 0 then return math.abs(radius) * 2 * math.pi * angle / 360.0 end -- otherwise integrate to get path length return integrate_length(self.get_pos) end function self.get_final_orientation() local q = Quaternion() q:from_axis_angle(makeVector3f(0,0,1), sgn(radius)*math.rad(angle)) return q end return self end --Wrapper to construct a Vector3f{x, y, z} from (x, y, z) function makeVector3f(x, y, z) local vec = Vector3f() vec:x(x) vec:y(y) vec:z(z) return vec end --[[ componse multuple sub-paths together --]] function path_composer(_subpaths) local self = {} local subpaths = _subpaths local lengths = {} local proportions = {} local start_time = {} local end_time = {} local start_orientation = {} local start_pos = {} local start_angle = {} local end_speed = {} local start_speed = {} local total_length = 0 local num_sub_paths = #subpaths local orientation = Quaternion() local pos = makeVector3f(0,0,0) local angle = 0 local speed = path_var.target_speed for i = 1, num_sub_paths do lengths[i] = subpaths[i][1].get_length() total_length = total_length + lengths[i] -- accumulate orientation, position and angle start_orientation[i] = orientation start_pos[i] = pos start_angle[i] = angle local spos = subpaths[i][1].get_pos(1.0) orientation:earth_to_body(spos) pos = pos + spos orientation = orientation * subpaths[i][1].get_final_orientation() angle = angle + subpaths[i][2].get_roll(1.0, lengths[i]/speed) start_speed[i] = speed end_speed[i] = subpaths[i][3] if end_speed[i] == nil then end_speed[i] = path_var.target_speed end speed = end_speed[i] end -- work out the proportion of the total time we will spend in each sub path local total_time = 0 for i = 1, num_sub_paths do proportions[i] = lengths[i] / total_length start_time[i] = total_time end_time[i] = total_time + proportions[i] total_time = total_time + proportions[i] end -- return position and angle for the composed path at time t function self.run(t) -- work out which subpath we are in local i = 1 while t >= end_time[i] and i < num_sub_paths do i = i + 1 end local subpath_t = (t - start_time[i]) / proportions[i] local speed = start_speed[i] + subpath_t * (end_speed[i] - start_speed[i]) pos = subpaths[i][1].get_pos(subpath_t) angle = subpaths[i][2].get_roll(subpath_t, lengths[i]/speed) start_orientation[i]:earth_to_body(pos) return pos + start_pos[i], math.rad(angle + start_angle[i]), speed end return self end function immelmann_turn(t, r, roll_rate, arg3, arg4) if t == 0 then local speed = path_var.target_speed path_var.composer = path_composer({ { path_vertical_arc(r, 180), roll_angle(0) }, { path_straight(speed*180.0/roll_rate), roll_angle(180) }, }) end return path_var.composer.run(t) end function humpty_bump(t, r, h, arg3, arg4) assert(h >= 2*r) if t == 0 then path_var.composer = path_composer({ { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight((h-2*r)/3), roll_angle(0) }, { path_straight((h-2*r)/3), roll_angle(180) }, { path_straight((h-2*r)/3), roll_angle(0) }, { path_vertical_arc(-r, 180), roll_angle(0) }, { path_straight(h-2*r), roll_angle(0) }, { path_vertical_arc(-r, 90), roll_angle(0) }, { path_straight(2*r), roll_angle(0) }, }) end return path_var.composer.run(t) end function split_s(t, r, roll_rate, arg3, arg4) if t == 0 then local speed = path_var.target_speed path_var.composer = path_composer({ { path_straight(speed*180.0/roll_rate), roll_angle(180) }, { path_vertical_arc(-r, 180), roll_angle(0) }, }) end return path_var.composer.run(t) end function upline_45(t, r, height_gain, arg3, arg4) if t == 0 then local h = height_gain - 2*r*math.sin(math.rad(45)) assert(h >= 0) path_var.composer = path_composer({ { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end return path_var.composer.run(t) end function downline_45(t, r, height_loss, arg3, arg4) if t == 0 then local h = height_loss - 2*r*math.sin(math.rad(45)) assert(h >= 0) path_var.composer = path_composer({ { path_vertical_arc(-r, 45), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end return path_var.composer.run(t) end function rolling_circle(t, radius, num_rolls, arg3, arg4) if t == 0 then path_var.composer = path_composer({ { path_horizontal_arc(radius, 360), roll_angle(360*num_rolls) }, }) end return path_var.composer.run(t) end function straight_flight(t, length, bank_angle, arg3, arg4) if t == 0 then local entry_s = bank_angle / AEROM_ENTRY_RATE:get() local entry_dist = path_var.target_speed * entry_s if length < 2*entry_dist then entry_dist = length*0.5 end path_var.composer = path_composer({ { path_straight(entry_dist), roll_angle(bank_angle) }, { path_straight(length - 2*entry_dist), roll_angle(0) }, { path_straight(entry_dist), roll_angle(-bank_angle) }, }) end return path_var.composer.run(t) end function banked_circle(t, radius, bank_angle, height, arg4) if t == 0 then local circumference = 2 * radius * math.pi local circle_s = circumference / path_var.target_speed local entry_s = bank_angle / AEROM_ENTRY_RATE:get() local entry_angle = (entry_s / circle_s) * 360.0 if entry_angle > 180 then entry_angle = 180 end path_var.composer = path_composer({ { path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) }, }) end return path_var.composer.run(t) end function scale_figure_eight(t, r, bank_angle, arg3, arg4) if t == 0 then path_var.composer = path_composer({ { path_straight(r), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) }, { path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) }, { path_straight(3*r), roll_angle(0) }, }) end return path_var.composer.run(t) end function figure_eight(t, r, bank_angle, arg3, arg4) if t == 0 then local rabs = math.abs(r) path_var.composer = path_composer({ { path_straight(rabs*math.sqrt(2)), roll_angle(0) }, { path_horizontal_arc(r, 225), roll_angle_entry_exit(bank_angle) }, { path_straight(2*rabs), roll_angle(0) }, { path_horizontal_arc(-r, 270), roll_angle_entry_exit(-bank_angle) }, { path_straight(2*rabs), roll_angle(0) }, { path_horizontal_arc(r, 45), roll_angle_entry_exit(bank_angle) }, }) end return path_var.composer.run(t) end --[[ stall turn is not really correct, as we don't fully stall. Needs to be reworked --]] function stall_turn(t, radius, height, direction, min_speed) if t == 0 then local h = height - radius assert(h >= 0) path_var.composer = path_composer({ { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight(h), roll_angle(0), min_speed }, { path_horizontal_arc(5*direction, 180), roll_angle(0), min_speed }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(radius, 90), roll_angle(0) }, }) end return path_var.composer.run(t) end function half_cuban_eight(t, r, arg2, arg3, arg4) if t == 0 then local rabs = math.abs(r) path_var.composer = path_composer({ { path_straight(2*rabs*math.sqrt(2)), roll_angle(0) }, { path_vertical_arc(r, 225), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end return path_var.composer.run(t) end function cuban_eight(t, r, arg2, arg3, arg4) if t == 0 then local rabs = math.abs(r) path_var.composer = path_composer({ { path_straight(rabs*math.sqrt(2)), roll_angle(0) }, { path_vertical_arc(r, 225), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 270), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end return path_var.composer.run(t) end function half_reverse_cuban_eight(t, r, arg2, arg3, arg4) if t == 0 then local rabs = math.abs(r) path_var.composer = path_composer({ { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 225), roll_angle(0) }, }) end return path_var.composer.run(t) end function horizontal_rectangle(t, total_length, total_width, r, bank_angle) if t == 0 then local l = total_length - 2*r local w = total_width - 2*r path_var.composer = path_composer({ { path_straight(0.5*l), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle)}, { path_straight(w), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(l), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(w), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(0.5*l), roll_angle(0) }, }) end return path_var.composer.run(t) end function vertical_aerobatic_box(t, total_length, total_width, r, bank_angle) if t == 0 then local l = total_length - 2*r local w = total_width - 2*r --TODO: this doesn't seem to work for roll_angle_entry_exit? path_var.composer = path_composer({ { path_straight(0.5*l), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0)}, { path_straight(w), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(l), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0)}, { path_straight(w), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0)}, { path_straight(0.5*l), roll_angle(0) }, }) end return path_var.composer.run(t) end --------------------------------------------------- --[[ target speed is taken as max of target airspeed and current 3D velocity at the start of the maneuver --]] function target_groundspeed() return math.max(ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01, ahrs:get_velocity_NED():length()) end --Estimate the length of the path in metres function path_length(path_f, arg1, arg2, arg3, arg4) local dt = 0.01 local total = 0.0 for i = 0, math.floor(1.0/dt) do local t = i*dt local t2 = t + dt local v1 = path_f(t, arg1, arg2, arg3, arg4) local v2 = path_f(t2, arg1, arg2, arg3, arg4) local dv = v2-v1 total = total + dv:length() end return total end --args: -- path_f: path function returning position -- t: normalised [0, 1] time -- arg1, arg2: arguments for path function -- orientation: maneuver frame orientation --returns: requested position, angle and speed in maneuver frame function rotate_path(path_f, t, arg1, arg2, arg3, arg4, orientation, offset) t = constrain(t, 0, 1) point, angle, speed = path_f(t, arg1, arg2, arg3, arg4) orientation:earth_to_body(point) --TODO: rotate angle? return point+offset, angle, speed end --args: -- dt: sample time -- cutoff_freq: cutoff frequency for low pass filter, in Hz --returns: alpha value required to implement LP filter function calc_lowpass_alpha_dt(dt, cutoff_freq) if dt <= 0.0 or cutoff_freq <= 0.0 then return 1.0 end local rc = 1.0/(2.0*3.14159265*cutoff_freq) local drc = dt/(dt+rc) if drc < 0.0 then return 0.0 end if drc > 1.0 then return 1.0 end return drc end --Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle --Note that the rotation will not be unique. function vectors_to_rotation(vector1, vector2) axis = vector1:cross(vector2) if axis:length() < 0.00001 then local vec = Vector3f() vec:x(1) return vec, 0 end axis:normalize() angle = vector1:angle(vector2) return axis, angle end --returns Quaternion function vectors_to_rotation_w_roll(vector1, vector2, roll) axis, angle = vectors_to_rotation(vector1, vector2) local vector_rotation = Quaternion() vector_rotation:from_axis_angle(axis, angle) local roll_rotation = Quaternion() roll_rotation:from_euler(roll, 0, 0) local total_rot = vector_rotation*roll_rotation return to_axis_and_angle(total_rot) end --Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle function vectors_to_angular_rate(vector1, vector2, time_constant) axis, angle = vectors_to_rotation(vector1, vector2) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll) axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function to_axis_and_angle(quat) local axis_angle = Vector3f() quat:to_axis_angle(axis_angle) angle = axis_angle:length() if(angle < 0.00001) then return makeVector3f(1.0, 0.0, 0.0), 0.0 end return axis_angle:scale(1.0/angle), angle end --projects x onto the othogonal subspace of span(unit_v) function ortho_proj(x, unit_v) local temp_x = unit_v:cross(x) return unit_v:cross(temp_x) end -- log a pose from position and quaternion attitude function log_pose(logname, pos, quat) logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff', pos:x(), pos:y(), pos:z(), quat:q1(), quat:q2(), quat:q3(), quat:q4(), math.deg(quat:get_euler_roll()), math.deg(quat:get_euler_pitch()), math.deg(quat:get_euler_yaw())) end --[[ check if a number is Nan. --]] function isNaN(value) -- NaN is lua is not equal to itself return value ~= value end path_var.count = 0 path_var.initial_ori = Quaternion() path_var.initial_maneuver_to_earth = Quaternion() function do_path() local now = millis():tofloat() * 0.001 path_var.count = path_var.count + 1 local target_dt = 1.0/LOOP_RATE local path = current_task.fn local arg1 = current_task.args[1] local arg2 = current_task.args[2] local arg3 = current_task.args[3] local arg4 = current_task.args[4] if not current_task.started then local initial_yaw_deg = current_task.initial_yaw_deg current_task.started = true local speed = target_groundspeed() path_var.target_speed = speed path_var.length = path_length(path, arg1, arg2, arg3, arg4) path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0) --assuming constant velocity path_var.total_time = path_var.length/speed path_var.last_pos, last_angle = path(0.0, arg1, arg2, arg3, arg4) --position at t0 --deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg)) path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg)) path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin() local corrected_position_t0_ef, angle_t0, s0 = rotate_path(path, target_dt/path_var.total_time, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local corrected_position_t1_ef, angle_t1, s0 = rotate_path(path, 2*target_dt/path_var.total_time, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) path_var.start_pos = ahrs:get_position() path_var.path_int = path_var.start_pos:copy() speed_PI.reset() path_var.accumulated_orientation_rel_ef = path_var.initial_ori path_var.time_correction = 0.0 path_var.filtered_angular_velocity = Vector3f() path_var.start_time = now + target_dt path_var.last_time = now path_var.average_dt = target_dt path_var.scaled_dt = target_dt path_var.path_t = 0 return true end local vel_length = ahrs:get_velocity_NED():length() local actual_dt = now - path_var.last_time local local_n_dt = actual_dt/path_var.total_time path_var.last_time = now if path_var.path_t + 2*local_n_dt > 1.0 then return false end --[[ calculate positions and angles at previous, current and next time steps --]] next_target_pos_ef = next_target_pos_ef local p0, r0, s0 = rotate_path(path, path_var.path_t + 0*local_n_dt, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local p1, r1, s1 = rotate_path(path, path_var.path_t + 1*local_n_dt, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local p2, r2, s2 = rotate_path(path, path_var.path_t + 2*local_n_dt, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local current_measured_pos_ef = ahrs:get_relative_position_NED_origin() --[[ get tangents to the path --]] local tangent1_ef = p1 - p0 local tangent2_ef = p2 - p1 local tv_unit = tangent2_ef:copy() tv_unit:normalize() --[[ use actual vehicle velocity to calculate how far along the path we have progressed --]] local v = ahrs:get_velocity_NED() local path_dist = v:dot(tv_unit)*actual_dt if path_dist < 0 then gcs:send_text(0, string.format("aborting")) return false end local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt) path_var.path_t = path_var.path_t + path_t_delta --[[ recalculate the current path position and angle based on actual delta time --]] p2, r2, s2 = rotate_path(path, constrain(path_var.path_t + path_t_delta, 0, 1), arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) -- tangents needs to be recalculated tangent1_ef = p1 - p0 tangent2_ef = p2 - p1 tv_unit = tangent2_ef:copy() tv_unit:normalize() -- error in position versus current point on the path local pos_error_ef = current_measured_pos_ef - p1 --[[ calculate a time correction. We first get the projection of the position error onto the track. This tells us how far we are ahead or behind on the track --]] local path_dist_err_m = tv_unit:dot(pos_error_ef) -- normalize against the total path length local path_err_t = path_dist_err_m / path_var.length -- don't allow the path to go backwards in time, or faster than twice the actual rate path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta) -- correct time to bring us back into sync path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t --[[ calculation of error correction, calculating acceleration needed to bring us back on the path, and body rates in pitch and yaw to achieve those accelerations --]] -- component of pos_err perpendicular to the current path tangent local B = ortho_proj(pos_error_ef, tv_unit) -- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant local B_dot = ortho_proj(v, tv_unit) -- gains for error correction. local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get()) local acc_err_bf = ahrs:earth_to_body(acc_err_ef) local TAS = constrain(ahrs:get_EAS2TAS()*ahrs:airspeed_estimate(), 3, 100) local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS local corr_rate_bf_z_rads = acc_err_bf:y()/TAS local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads) local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1)) --[[ work out body frame path rate, this is based on two adjacent tangents on the path --]] local path_rate_ef_rads = vectors_to_angular_rate(tangent1_ef, tangent2_ef, actual_dt) local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1)) local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps) -- set the path roll rate path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt)) --[[ calculate body frame roll rate to achieved the desired roll angle relative to the maneuver path --]] local zero_roll_angle_delta = Quaternion() zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt) path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef path_var.accumulated_orientation_rel_ef:normalize() local mf_axis = makeVector3f(1, 0, 0) path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis) local orientation_rel_mf_with_roll_angle = Quaternion() orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1) orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef --[[ calculate the error correction for the roll versus the desired roll --]] local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse() roll_error:normalize() local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error) local time_const_roll = ROLL_CORR_TC:get() local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll) local err_angle_rate_bf_dps = ahrs:earth_to_body(err_angle_rate_ef_rads):scale(math.deg(1)) -- zero any non-roll components err_angle_rate_bf_dps:y(0) err_angle_rate_bf_dps:z(0) --[[ total angular rate is sum of path rate, correction rate and roll correction rate --]] local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps --[[ log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll --]] log_pose('POSM', current_measured_pos_ef, ahrs:get_quaternion()) log_pose('POST', p1, orientation_rel_ef_with_roll_angle) logger.write('AETM', 'T,Terr','ff', path_var.path_t, path_err_t) logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz', 'ffffffffff', cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(), path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(), err_angle_rate_bf_dps:x(), tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z()) --log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef) --[[ run the throttle based speed controller --]] if s1 == nil then s1 = path_var.target_speed end throttle = speed_PI.update(s1) throttle = constrain(throttle, 0, 100.0) if isNaN(throttle) or isNaN(tot_ang_vel_bf_dps:x()) or isNaN(tot_ang_vel_bf_dps:y()) or isNaN(tot_ang_vel_bf_dps:z()) then gcs:send_text(0,string.format("Path NaN - aborting")) return false end vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z()) return true end --[[ an object defining a path --]] function PathFunction(fn, name) local self = {} self.fn = fn self.name = name return self end command_table = {} command_table[1] = PathFunction(figure_eight, "Figure Eight") command_table[2] = PathFunction(loop, "Loop") command_table[3] = PathFunction(horizontal_rectangle, "Horizontal Rectangle") command_table[4] = PathFunction(climbing_circle, "Climbing Circle") command_table[5] = PathFunction(vertical_aerobatic_box, "Vertical Box") command_table[6] = PathFunction(banked_circle, "Banked Circle") command_table[7] = PathFunction(straight_roll, "Axial Roll") command_table[8] = PathFunction(rolling_circle, "Rolling Circle") command_table[9] = PathFunction(half_cuban_eight, "Half Cuban Eight") command_table[10]= PathFunction(half_reverse_cuban_eight, "Half Reverse Cuban Eight") command_table[11]= PathFunction(cuban_eight, "Cuban Eight") command_table[12]= PathFunction(humpty_bump, "Humpty Bump") command_table[13]= PathFunction(straight_flight, "Straight Flight") command_table[14]= PathFunction(scale_figure_eight, "Scale Figure Eight") command_table[15]= PathFunction(immelmann_turn, "Immelmann Turn") command_table[16]= PathFunction(split_s, "Split-S") command_table[17]= PathFunction(upline_45, "Upline-45") command_table[18]= PathFunction(downline_45, "Downline-45") command_table[19]= PathFunction(stall_turn, "Stall Turn") -- command_table[100] = PathFunction(clubman_schedule, "Clubman Schedule") -- get a location structure from a waypoint number function get_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end -- set wp location function wp_setloc(wp, loc) wp:x(loc:lat()) wp:y(loc:lng()) wp:z(loc:alt()*0.01) end -- add a waypoint to the end of the mission function wp_add(loc,ctype,param1,param2) local wp = mavlink_mission_item_int_t() wp_setloc(wp,loc) wp:command(ctype) local seq = mission:num_commands() wp:seq(seq) wp:param1(param1) wp:param2(param2) wp:frame(3) -- global position, relative alt mission:set_item(seq, wp) end -- add a NAV_SCRIPT_TIME waypoint to the end of the mission function wp_add_nav_script(cmdid,arg1,arg2,arg3,arg4) local wp = mavlink_mission_item_int_t() wp:command(NAV_SCRIPT_TIME) local seq = mission:num_commands() wp:seq(seq) wp:param1(cmdid) wp:param2(0) -- timeout wp:param3(arg1) wp:param4(arg2) wp:x(arg3) wp:y(arg4) mission:set_item(seq, wp) end --[[ create auto mission 1 --]] function create_auto_mission1() local N = mission:num_commands() if N ~= 4 then gcs:send_text(0,string.format("Auto mission needs takeoff and 2 WPs (got %u)", N)) return end local takeoff_m = mission:get_item(1) if takeoff_m:command() ~= NAV_TAKEOFF then gcs:send_text(0,string.format("First WP needs to be takeoff")) return end local wp1 = get_location(2) local wp2 = get_location(3) local wp_dist = wp1:get_distance(wp2) local wp_bearing = math.deg(wp1:get_bearing(wp2)) local radius = AUTO_RAD:get() gcs:send_text(0, string.format("WP Distance %.0fm bearing %.1fdeg", wp_dist, wp_bearing)) -- find mid-point, 25% and 75% points local wp_mid = wp1:copy() wp_mid:offset_bearing(wp_bearing, wp_dist*0.5) local wp_25pct = wp1:copy() wp_25pct:offset_bearing(wp_bearing, wp_dist*0.25) local wp_75pct = wp1:copy() wp_75pct:offset_bearing(wp_bearing, wp_dist*0.75) gcs:send_text(0,"Adding half cuban eight") wp_add_nav_script(9, radius, 0, 0, 0) gcs:send_text(0,"Adding loop") wp_add(wp_mid, NAV_WAYPOINT, 0, 1) wp_add_nav_script(2, radius, 0, 0, 0) gcs:send_text(0,"Adding half reverse cuban eight") wp_add(wp1, NAV_WAYPOINT, 0, 0) wp_add_nav_script(10, radius, 0, 0, 0) gcs:send_text(0,"Adding axial roll") wp_add(wp_25pct, NAV_WAYPOINT, 0, 1) wp_add_nav_script(7, wp_dist*0.5, 1, 0, 0) gcs:send_text(0,"Adding humpty bump") wp_add(wp2, NAV_WAYPOINT, 0, 1) wp_add_nav_script(12, radius*0.25, 0.5*radius, 0, 0) gcs:send_text(0,"Adding cuban eight") wp_add(wp_mid, NAV_WAYPOINT, 0, 0) wp_add_nav_script(11, radius, 0, 0, 0) wp_add(wp1, NAV_WAYPOINT, 0, 0) end function create_auto_mission() if AUTO_MIS:get() == 1 then create_auto_mission1() else gcs:send_text(0, string.format("Unknown auto mission", AUTO_MIS:get())) end end function PathTask(fn, name, id, initial_yaw_deg, arg1, arg2, arg3, arg4) self = {} self.fn = fn self.name = name self.id = id self.initial_yaw_deg = initial_yaw_deg self.args = { arg1, arg2, arg3, arg4 } self.started = false return self end -- see if an auto mission item needs to be run function check_auto_mission() id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time() if not id then return end if id ~= last_id then -- we've started a new command current_task = nil last_id = id local initial_yaw_deg = math.deg(ahrs:get_yaw()) gcs:send_text(0, string.format("Starting %s!", command_table[cmd].name )) -- work out yaw between previous WP and next WP local cnum = mission:get_current_nav_index() -- find previous nav waypoint local loc_prev = get_wp_location(cnum-1) local loc_next = get_wp_location(cnum+1) local i= cnum-1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i-1 loc_prev = get_wp_location(i) end -- find next nav waypoint i = cnum+1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i+1 loc_next = get_wp_location(resolve_jump(i)) end local wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next)) if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then gcs:send_text(0, string.format("Doing turnaround!")) wp_yaw_deg = wrap_180(wp_yaw_deg + 180) end initial_yaw_deg = wp_yaw_deg current_task = PathTask(command_table[cmd].fn, command_table[cmd].name, id, initial_yaw_deg, arg1, arg2, arg3, arg4) end end local last_trick_action_state = 0 local trick_sel_chan = nil local last_trick_selection = nil --[[ get selected trick. Trick numbers are 1 .. TRIK_COUNT. A value of 0 is invalid --]] function get_trick_selection() if trick_sel_chan == nil then trick_sel_chan = rc:find_channel_for_option(TRIK_SEL_FN:get()) if trick_sel_chan == nil then return 0 end end -- get trick selection based on selection channel input and number of tricks local i = math.floor(TRIK_COUNT:get() * constrain(0.5*(trick_sel_chan:norm_input_ignore_trim()+1),0,0.999)+1) if TRICKS[i] == nil then return 0 end return i end --[[ check for running a trick --]] function check_trick() local selection = get_trick_selection() local action = rc:get_aux_cached(TRIK_ACT_FN:get()) if action == 0 and current_task ~= nil then gcs:send_text(0,string.format("Trick aborted")) current_task = nil last_trick_selection = nil -- use invalid mode to disable script control vehicle:nav_scripting_enable(255) return end if selection == 0 then return end if action == 1 and selection ~= last_trick_selection then local id = TRICKS[selection].id:get() if command_table[id] ~= nil then local cmd = command_table[id] gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name)) last_trick_selection = selection return end end if current_task ~= nil then -- let the task finish return end if action ~= last_trick_action_state then last_trick_selection = selection last_trick_action_state = action if selection == 0 then gcs:send_text(0, string.format("No trick selected")) return end local id = TRICKS[selection].id:get() if command_table[id] == nil then gcs:send_text(0, string.format("Invalid trick ID %u", id)) return end local cmd = command_table[id] if action == 1 then gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name)) end if action == 2 then last_trick_selection = nil local current_mode = vehicle:get_mode() if not vehicle:nav_scripting_enable(current_mode) then gcs:send_text(0, string.format("Tricks not available in mode")) return end gcs:send_text(0, string.format("Trick %u started (%s)", selection, cmd.name)) local initial_yaw_deg = math.deg(ahrs:get_yaw()) current_task = PathTask(cmd.fn, cmd.name, nil, initial_yaw_deg, TRICKS[selection].args[1]:get(), TRICKS[selection].args[2]:get(), TRICKS[selection].args[3]:get(), TRICKS[selection].args[4]:get()) end end end function update() -- check if we should create a mission if AUTO_MIS:get() > 0 then create_auto_mission() AUTO_MIS:set_and_save(0) end check_auto_mission() if TRICKS ~= nil and vehicle:get_mode() ~= MODE_AUTO then check_trick() end if current_task ~= nil then if not do_path() then gcs:send_text(0, string.format("Finishing %s!", current_task.name)) if current_task.id ~= nil then vehicle:nav_script_time_done(current_task.id) else -- use invalid mode to disable script control vehicle:nav_scripting_enable(255) end current_task = nil end end return update, 1000.0/LOOP_RATE end return update()