/* control of servo output ranges, trim and servo reversal. This can optionally be used to provide separation of input and output channel ranges so that RCn_MIN, RCn_MAX, RCn_TRIM and RCn_REV only apply to the input side of RC_Channel It works by running servo output calculations as normal, then re-mapping the output according to the servo MIN/MAX/TRIM/REV from this object Only 4 channels of ranges are defined as those match the input channels for R/C sticks */ #pragma once #include #include #include #include #include #include #include #include #include #ifndef NUM_SERVO_CHANNELS #if defined(HAL_BUILD_AP_PERIPH) && defined(HAL_PWM_COUNT) #define NUM_SERVO_CHANNELS HAL_PWM_COUNT #elif defined(HAL_BUILD_AP_PERIPH) #define NUM_SERVO_CHANNELS 0 #else #define NUM_SERVO_CHANNELS 16 #endif #endif class SRV_Channels; /* class SRV_Channel. The class SRV_Channels contains an array of SRV_Channel objects. This is done to fit within the AP_Param limit of 64 parameters per object. */ class SRV_Channel { public: friend class SRV_Channels; // constructor SRV_Channel(void); static const struct AP_Param::GroupInfo var_info[]; typedef enum { k_GPIO = -1, ///< used as GPIO pin (input or output) k_none = 0, ///< general use PWM output used by do-set-servo commands and lua scripts k_manual = 1, ///< manual, just pass-thru the RC in signal k_flap = 2, ///< flap k_flap_auto = 3, ///< flap automated k_aileron = 4, ///< aileron k_unused1 = 5, ///< unused function k_mount_pan = 6, ///< mount yaw (pan) k_mount_tilt = 7, ///< mount pitch (tilt) k_mount_roll = 8, ///< mount roll k_mount_open = 9, ///< mount open (deploy) / close (retract) k_cam_trigger = 10, ///< camera trigger k_egg_drop = 11, ///< egg drop, deprecated k_mount2_pan = 12, ///< mount2 yaw (pan) k_mount2_tilt = 13, ///< mount2 pitch (tilt) k_mount2_roll = 14, ///< mount2 roll k_mount2_open = 15, ///< mount2 open (deploy) / close (retract) k_dspoilerLeft1 = 16, ///< differential spoiler 1 (left wing) k_dspoilerRight1 = 17, ///< differential spoiler 1 (right wing) k_aileron_with_input = 18, ///< aileron, with rc input, deprecated k_elevator = 19, ///< elevator k_elevator_with_input = 20, ///< elevator, with rc input, deprecated k_rudder = 21, ///< secondary rudder channel k_sprayer_pump = 22, ///< crop sprayer pump channel k_sprayer_spinner = 23, ///< crop sprayer spinner channel k_flaperon_left = 24, ///< flaperon, left wing k_flaperon_right = 25, ///< flaperon, right wing k_steering = 26, ///< ground steering, used to separate from rudder k_parachute_release = 27, ///< parachute release k_gripper = 28, ///< gripper k_landing_gear_control = 29, ///< landing gear controller k_engine_run_enable = 30, ///< engine kill switch, used for gas airplanes and helicopters k_heli_rsc = 31, ///< helicopter RSC output k_heli_tail_rsc = 32, ///< helicopter tail RSC output k_motor1 = 33, ///< these allow remapping of copter motors k_motor2 = 34, k_motor3 = 35, k_motor4 = 36, k_motor5 = 37, k_motor6 = 38, k_motor7 = 39, k_motor8 = 40, k_motor_tilt = 41, ///< tiltrotor motor tilt control k_generator_control = 42, ///< state control for generator k_tiltMotorRear = 45, ///= k_none && fn < k_nr_aux_servo_functions; } bool valid_function(void) const { return valid_function(function); } // used to get min/max/trim limit value based on reverse enum class Limit { TRIM, MIN, MAX, ZERO_PWM }; // set the output value as a pwm value void set_output_pwm(uint16_t pwm, bool force = false); // get the output value as a pwm value uint16_t get_output_pwm(void) const { return output_pwm; } // set normalised output from -1 to 1, assuming 0 at mid point of servo_min/servo_max void set_output_norm(float value); // set angular range of scaled output void set_angle(int16_t angle); // set range of scaled output. Low is always zero void set_range(uint16_t high); // return true if the channel is reversed bool get_reversed(void) const { return reversed != 0; } // set MIN/MAX parameters void set_output_min(uint16_t pwm) { servo_min.set(pwm); } void set_output_max(uint16_t pwm) { servo_max.set(pwm); } // get MIN/MAX/TRIM parameters uint16_t get_output_min(void) const { return servo_min; } uint16_t get_output_max(void) const { return servo_max; } uint16_t get_trim(void) const { return servo_trim; } // return true if function is for a multicopter motor static bool is_motor(SRV_Channel::Aux_servo_function_t function); // return true if function is for anything that should be stopped in a e-stop situation, ie is dangerous static bool should_e_stop(SRV_Channel::Aux_servo_function_t function); // return true if function is for a control surface static bool is_control_surface(SRV_Channel::Aux_servo_function_t function); // return the function of a channel SRV_Channel::Aux_servo_function_t get_function(void) const { return (SRV_Channel::Aux_servo_function_t)function.get(); } // return the motor number of a channel, or -1 if not a motor int8_t get_motor_num(void) const; // set and save function for channel. Used in upgrade of parameters in plane void function_set_and_save(SRV_Channel::Aux_servo_function_t f) { function.set_and_save(int8_t(f)); } // set and save function for reversed. Used in upgrade of parameters in plane void reversed_set_and_save_ifchanged(bool r) { reversed.set_and_save_ifchanged(r?1:0); } // return true if the SERVOn_FUNCTION has been configured in // either storage or a defaults file. This is used for upgrade of // parameters in plane bool function_configured(void) const { return function.configured(); } // specify that small rc input changes should be ignored during passthrough // used by DO_SET_SERVO commands void ignore_small_rcin_changes() { ign_small_rcin_changes = true; } private: AP_Int16 servo_min; AP_Int16 servo_max; AP_Int16 servo_trim; // reversal, following convention that 1 means reversed, 0 means normal AP_Int8 reversed; AP_Enum16 function; // a pending output value as PWM uint16_t output_pwm; // true for angle output type bool type_angle:1; // set_range() or set_angle() has been called bool type_setup:1; // the hal channel number uint8_t ch_num; // high point of angle or range output uint16_t high_out; // convert a 0..range_max to a pwm uint16_t pwm_from_range(float scaled_value) const; // convert a -angle_max..angle_max to a pwm uint16_t pwm_from_angle(float scaled_value) const; // convert a scaled output to a pwm value void calc_pwm(float output_scaled); // output value based on function void output_ch(void); // setup output type and range based on function void aux_servo_function_setup(void); // return PWM for a given limit value uint16_t get_limit_pwm(Limit limit) const; // get normalised output from -1 to 1, assuming 0 at mid point of servo_min/servo_max float get_output_norm(void); // a bitmask type wide enough for NUM_SERVO_CHANNELS typedef uint16_t servo_mask_t; // mask of channels where we have a output_pwm value. Cleared when a // scaled value is written. static servo_mask_t have_pwm_mask; // previous radio_in during pass-thru int16_t previous_radio_in; // specify that small rcinput changes should be ignored during passthrough // used by DO_SET_SERVO commands bool ign_small_rcin_changes; // if true we should ignore all imputs on this channel bool override_active; void set_override(bool b) {override_active = b;}; }; /* class SRV_Channels */ class SRV_Channels { public: friend class SRV_Channel; // constructor SRV_Channels(void); static const struct AP_Param::GroupInfo var_info[]; // set the default function for a channel static void set_default_function(uint8_t chan, SRV_Channel::Aux_servo_function_t function); // set output value for a function channel as a pwm value static void set_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t value); // set output value for a specific function channel as a pwm value static void set_output_pwm_chan(uint8_t chan, uint16_t value); // set output value for a specific function channel as a pwm value for specified override time in ms static void set_output_pwm_chan_timeout(uint8_t chan, uint16_t value, uint16_t timeout_ms); // set output value for a function channel as a scaled value. This // calls calc_pwm() to also set the pwm value static void set_output_scaled(SRV_Channel::Aux_servo_function_t function, float value); // get scaled output for the given function type. static float get_output_scaled(SRV_Channel::Aux_servo_function_t function); // get slew limited scaled output for the given function type static float get_slew_limited_output_scaled(SRV_Channel::Aux_servo_function_t function); // get pwm output for the first channel of the given function type. static bool get_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t &value); // get normalised output (-1 to 1 with 0 at mid point of servo_min/servo_max) // Value is taken from pwm value. Returns zero on error. static float get_output_norm(SRV_Channel::Aux_servo_function_t function); // set normalised output (-1 to 1 with 0 at mid point of servo_min/servo_max) for the given function static void set_output_norm(SRV_Channel::Aux_servo_function_t function, float value); // get output channel mask for a function static uint16_t get_output_channel_mask(SRV_Channel::Aux_servo_function_t function); // limit slew rate to given limit in percent per second static void set_slew_rate(SRV_Channel::Aux_servo_function_t function, float slew_rate, uint16_t range, float dt); // call output_ch() on all channels static void output_ch_all(void); // setup output ESC scaling based on a channels MIN/MAX void set_esc_scaling_for(SRV_Channel::Aux_servo_function_t function); // return true when auto_trim enabled bool auto_trim_enabled(void) const { return auto_trim; } // adjust trim of a channel by a small increment void adjust_trim(SRV_Channel::Aux_servo_function_t function, float v); // set MIN/MAX parameters for a function static void set_output_min_max(SRV_Channel::Aux_servo_function_t function, uint16_t min_pwm, uint16_t max_pwm); // save trims void save_trim(void); // setup IO failsafe for all channels to trim static void setup_failsafe_trim_all_non_motors(void); // set output for all channels matching the given function type, allow radio_trim to center servo static void set_output_pwm_trimmed(SRV_Channel::Aux_servo_function_t function, int16_t value); // set and save the trim for a function channel to the output value static void set_trim_to_servo_out_for(SRV_Channel::Aux_servo_function_t function); // set the trim for a function channel to min of the channel honnoring reverse unless ignore_reversed is true static void set_trim_to_min_for(SRV_Channel::Aux_servo_function_t function, bool ignore_reversed = false); // set the trim for a function channel to given pwm static void set_trim_to_pwm_for(SRV_Channel::Aux_servo_function_t function, int16_t pwm); // set output to min value static void set_output_to_min(SRV_Channel::Aux_servo_function_t function); // set output to max value static void set_output_to_max(SRV_Channel::Aux_servo_function_t function); // set output to trim value static void set_output_to_trim(SRV_Channel::Aux_servo_function_t function); // copy radio_in to servo out static void copy_radio_in_out(SRV_Channel::Aux_servo_function_t function, bool do_input_output=false); // copy radio_in to servo_out by channel mask static void copy_radio_in_out_mask(uint16_t mask); // setup failsafe for an auxiliary channel function, by pwm static void set_failsafe_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t pwm); // setup failsafe for an auxiliary channel function static void set_failsafe_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::Limit limit); // set servo to a Limit static void set_output_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::Limit limit); // return true if a function is assigned to a channel static bool function_assigned(SRV_Channel::Aux_servo_function_t function); // set a servo_out value, and angle range, then calc_pwm static void move_servo(SRV_Channel::Aux_servo_function_t function, int16_t value, int16_t angle_min, int16_t angle_max); // assign and enable auxiliary channels static void enable_aux_servos(void); // enable channels by mask static void enable_by_mask(uint16_t mask); // return the current function for a channel static SRV_Channel::Aux_servo_function_t channel_function(uint8_t channel); // refresh aux servo to function mapping static void update_aux_servo_function(void); // set default channel for an auxiliary function static bool set_aux_channel_default(SRV_Channel::Aux_servo_function_t function, uint8_t channel); // find first channel that a function is assigned to static bool find_channel(SRV_Channel::Aux_servo_function_t function, uint8_t &chan); // find first channel that a function is assigned to, returning SRV_Channel object static SRV_Channel *get_channel_for(SRV_Channel::Aux_servo_function_t function, int8_t default_chan=-1); // call set_angle() on matching channels static void set_angle(SRV_Channel::Aux_servo_function_t function, uint16_t angle); // call set_range() on matching channels static void set_range(SRV_Channel::Aux_servo_function_t function, uint16_t range); // set output refresh frequency on a servo function static void set_rc_frequency(SRV_Channel::Aux_servo_function_t function, uint16_t frequency); // control pass-thru of channels void disable_passthrough(bool disable) { disabled_passthrough = disable; } // constrain to output min/max for function static void constrain_pwm(SRV_Channel::Aux_servo_function_t function); // calculate PWM for all channels static void calc_pwm(void); // return the ESC type for dshot commands static AP_HAL::RCOutput::DshotEscType get_dshot_esc_type() { return AP_HAL::RCOutput::DshotEscType(_singleton->dshot_esc_type.get()); } static SRV_Channel *srv_channel(uint8_t i) { #if NUM_SERVO_CHANNELS > 0 return i function_mask; static bool initialised; // this static arrangement is to avoid having static objects in AP_Param tables static SRV_Channel *channels; static SRV_Channels *_singleton; #if AP_VOLZ_ENABLED // support for Volz protocol AP_Volz_Protocol volz; static AP_Volz_Protocol *volz_ptr; #endif #ifndef HAL_BUILD_AP_PERIPH // support for SBUS protocol AP_SBusOut sbus; static AP_SBusOut *sbus_ptr; #endif // HAL_BUILD_AP_PERIPH #if AP_ROBOTISSERVO_ENABLED // support for Robotis servo protocol AP_RobotisServo robotis; static AP_RobotisServo *robotis_ptr; #endif #if HAL_SUPPORT_RCOUT_SERIAL // support for BLHeli protocol AP_BLHeli blheli; static AP_BLHeli *blheli_ptr; #endif #if AP_FETTEC_ONEWIRE_ENABLED AP_FETtecOneWire fetteconwire; static AP_FETtecOneWire *fetteconwire_ptr; #endif // AP_FETTEC_ONEWIRE_ENABLED // mask of disabled channels static uint16_t disabled_mask; // mask of outputs which use a digital output protocol, not // PWM (eg. DShot) static uint16_t digital_mask; // mask of outputs which are digitally reversible (eg. DShot-3D) static uint16_t reversible_mask; SRV_Channel obj_channels[NUM_SERVO_CHANNELS]; // override loop counter static uint16_t override_counter[NUM_SERVO_CHANNELS]; static struct srv_function { // mask of what channels this applies to SRV_Channel::servo_mask_t channel_mask; // scaled output for this function float output_scaled; } functions[SRV_Channel::k_nr_aux_servo_functions]; AP_Int8 auto_trim; AP_Int16 default_rate; AP_Int8 dshot_rate; AP_Int8 dshot_esc_type; AP_Int32 gpio_mask; // return true if passthrough is disabled static bool passthrough_disabled(void) { return disabled_passthrough; } static bool emergency_stop; // linked list for slew rate handling struct slew_list { slew_list(SRV_Channel::Aux_servo_function_t _func) : func(_func) {}; const SRV_Channel::Aux_servo_function_t func; float last_scaled_output; float max_change; slew_list * next; }; static slew_list *_slew; // semaphore for multi-thread use of override_counter array HAL_Semaphore override_counter_sem; };