import math from math import sqrt, acos, cos, pi, sin, atan2 import os, sys, time, random from rotmat import Vector3, Matrix3 from subprocess import call, check_call,Popen, PIPE def m2ft(x): '''meters to feet''' return float(x) / 0.3048 def ft2m(x): '''feet to meters''' return float(x) * 0.3048 def kt2mps(x): return x * 0.514444444 def mps2kt(x): return x / 0.514444444 def topdir(): '''return top of git tree where autotest is running from''' d = os.path.dirname(os.path.realpath(__file__)) assert(os.path.basename(d)=='pysim') d = os.path.dirname(d) assert(os.path.basename(d)=='autotest') d = os.path.dirname(d) assert(os.path.basename(d)=='Tools') d = os.path.dirname(d) return d def reltopdir(path): '''return a path relative to topdir()''' return os.path.normpath(os.path.join(topdir(), path)) def run_cmd(cmd, dir=".", show=False, output=False, checkfail=True): '''run a shell command''' if show: print("Running: '%s' in '%s'" % (cmd, dir)) if output: return Popen([cmd], shell=True, stdout=PIPE, cwd=dir).communicate()[0] elif checkfail: return check_call(cmd, shell=True, cwd=dir) else: return call(cmd, shell=True, cwd=dir) def rmfile(path): '''remove a file if it exists''' try: os.unlink(path) except Exception: pass def deltree(path): '''delete a tree of files''' run_cmd('rm -rf %s' % path) def build_SIL(atype, target='sitl', j=1): '''build desktop SIL''' run_cmd("make clean", dir=reltopdir(atype), checkfail=True) run_cmd("make -j%u %s" % (j, target), dir=reltopdir(atype), checkfail=True) return True # list of pexpect children to close on exit close_list = [] def pexpect_autoclose(p): '''mark for autoclosing''' global close_list close_list.append(p) def pexpect_close(p): '''close a pexpect child''' global close_list try: p.close() except Exception: pass try: p.close(force=True) except Exception: pass if p in close_list: close_list.remove(p) def pexpect_close_all(): '''close all pexpect children''' global close_list for p in close_list[:]: pexpect_close(p) def pexpect_drain(p): '''drain any pending input''' import pexpect try: p.read_nonblocking(1000, timeout=0) except pexpect.TIMEOUT: pass def start_SIL(atype, valgrind=False, wipe=False, synthetic_clock=True, home=None, model=None, speedup=1, defaults_file=None): '''launch a SIL instance''' import pexpect cmd="" if valgrind and os.path.exists('/usr/bin/valgrind'): cmd += 'valgrind -q --log-file=%s-valgrind.log ' % atype executable = reltopdir('tmp/%s.build/%s.elf' % (atype, atype)) if not os.path.exists(executable): executable = '/tmp/%s.build/%s.elf' % (atype, atype) cmd += executable if wipe: cmd += ' -w' if synthetic_clock: cmd += ' -S' if home is not None: cmd += ' --home=%s' % home if model is not None: cmd += ' --model=%s' % model if speedup != 1: cmd += ' --speedup=%f' % speedup if defaults_file is not None: cmd += ' --defaults=%s' % defaults_file print("Running: %s" % cmd) ret = pexpect.spawn(cmd, logfile=sys.stdout, timeout=5) ret.delaybeforesend = 0 pexpect_autoclose(ret) ret.expect('Waiting for connection') return ret def start_MAVProxy_SIL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760', options=None, logfile=sys.stdout): '''launch mavproxy connected to a SIL instance''' import pexpect global close_list MAVPROXY = os.getenv('MAVPROXY_CMD', 'mavproxy.py') cmd = MAVPROXY + ' --master=%s --out=127.0.0.1:14550' % master if setup: cmd += ' --setup' if aircraft is None: aircraft = 'test.%s' % atype cmd += ' --aircraft=%s' % aircraft if options is not None: cmd += ' ' + options ret = pexpect.spawn(cmd, logfile=logfile, timeout=60) ret.delaybeforesend = 0 pexpect_autoclose(ret) return ret def expect_setup_callback(e, callback): '''setup a callback that is called once a second while waiting for patterns''' import pexpect def _expect_callback(pattern, timeout=e.timeout): tstart = time.time() while time.time() < tstart + timeout: try: ret = e.expect_saved(pattern, timeout=1) return ret except pexpect.TIMEOUT: e.expect_user_callback(e) pass print("Timed out looking for %s" % pattern) raise pexpect.TIMEOUT(timeout) e.expect_user_callback = callback e.expect_saved = e.expect e.expect = _expect_callback def mkdir_p(dir): '''like mkdir -p''' if not dir: return if dir.endswith("/"): mkdir_p(dir[:-1]) return if os.path.isdir(dir): return mkdir_p(os.path.dirname(dir)) os.mkdir(dir) def loadfile(fname): '''load a file as a string''' f = open(fname, mode='r') r = f.read() f.close() return r def lock_file(fname): '''lock a file''' import fcntl f = open(fname, mode='w') try: fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB) except Exception: return None return f def check_parent(parent_pid=None): '''check our parent process is still alive''' if parent_pid is None: try: parent_pid = os.getppid() except Exception: pass if parent_pid is None: return try: os.kill(parent_pid, 0) except Exception: print("Parent had finished - exiting") sys.exit(1) def EarthRatesToBodyRates(dcm, earth_rates): '''convert the angular velocities from earth frame to body frame. Thanks to James Goppert for the formula all inputs and outputs are in radians returns a gyro vector in body frame, in rad/s ''' from math import sin, cos (phi, theta, psi) = dcm.to_euler() phiDot = earth_rates.x thetaDot = earth_rates.y psiDot = earth_rates.z p = phiDot - psiDot*sin(theta) q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta) r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot return Vector3(p, q, r) def BodyRatesToEarthRates(dcm, gyro): '''convert the angular velocities from body frame to earth frame. all inputs and outputs are in radians/s returns a earth rate vector ''' from math import sin, cos, tan, fabs p = gyro.x q = gyro.y r = gyro.z (phi, theta, psi) = dcm.to_euler() phiDot = p + tan(theta)*(q*sin(phi) + r*cos(phi)) thetaDot = q*cos(phi) - r*sin(phi) if fabs(cos(theta)) < 1.0e-20: theta += 1.0e-10 psiDot = (q*sin(phi) + r*cos(phi))/cos(theta) return Vector3(phiDot, thetaDot, psiDot) radius_of_earth = 6378100.0 # in meters def gps_newpos(lat, lon, bearing, distance): '''extrapolate latitude/longitude given a heading and distance thanks to http://www.movable-type.co.uk/scripts/latlong.html ''' from math import sin, asin, cos, atan2, radians, degrees lat1 = radians(lat) lon1 = radians(lon) brng = radians(bearing) dr = distance/radius_of_earth lat2 = asin(sin(lat1)*cos(dr) + cos(lat1)*sin(dr)*cos(brng)) lon2 = lon1 + atan2(sin(brng)*sin(dr)*cos(lat1), cos(dr)-sin(lat1)*sin(lat2)) return (degrees(lat2), degrees(lon2)) def gps_distance(lat1, lon1, lat2, lon2): '''return distance between two points in meters, coordinates are in degrees thanks to http://www.movable-type.co.uk/scripts/latlong.html''' lat1 = math.radians(lat1) lat2 = math.radians(lat2) lon1 = math.radians(lon1) lon2 = math.radians(lon2) dLat = lat2 - lat1 dLon = lon2 - lon1 a = math.sin(0.5*dLat)**2 + math.sin(0.5*dLon)**2 * math.cos(lat1) * math.cos(lat2) c = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0-a)) return radius_of_earth * c def gps_bearing(lat1, lon1, lat2, lon2): '''return bearing between two points in degrees, in range 0-360 thanks to http://www.movable-type.co.uk/scripts/latlong.html''' lat1 = math.radians(lat1) lat2 = math.radians(lat2) lon1 = math.radians(lon1) lon2 = math.radians(lon2) dLat = lat2 - lat1 dLon = lon2 - lon1 y = math.sin(dLon) * math.cos(lat2) x = math.cos(lat1)*math.sin(lat2) - math.sin(lat1)*math.cos(lat2)*math.cos(dLon) bearing = math.degrees(math.atan2(y, x)) if bearing < 0: bearing += 360.0 return bearing class Wind(object): '''a wind generation object''' def __init__(self, windstring, cross_section=0.1): a = windstring.split(',') if len(a) != 3: raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring) self.speed = float(a[0]) # m/s self.direction = float(a[1]) # direction the wind is going in self.turbulance= float(a[2]) # turbulance factor (standard deviation) # the cross-section of the aircraft to wind. This is multiplied by the # difference in the wind and the velocity of the aircraft to give the acceleration self.cross_section = cross_section # the time constant for the turbulance - the average period of the # changes over time self.turbulance_time_constant = 5.0 # wind time record self.tlast = time.time() # initial turbulance multiplier self.turbulance_mul = 1.0 def current(self, deltat=None): '''return current wind speed and direction as a tuple speed is in m/s, direction in degrees ''' if deltat is None: tnow = time.time() deltat = tnow - self.tlast self.tlast = tnow # update turbulance random walk w_delta = math.sqrt(deltat)*(1.0-random.gauss(1.0, self.turbulance)) w_delta -= (self.turbulance_mul-1.0)*(deltat/self.turbulance_time_constant) self.turbulance_mul += w_delta speed = self.speed * math.fabs(self.turbulance_mul) return (speed, self.direction) # Calculate drag. def drag(self, velocity, deltat=None, testing=None): '''return current wind force in Earth frame. The velocity parameter is a Vector3 of the current velocity of the aircraft in earth frame, m/s''' from math import radians # (m/s, degrees) : wind vector as a magnitude and angle. (speed, direction) = self.current(deltat=deltat) # speed = self.speed # direction = self.direction # Get the wind vector. w = toVec(speed, radians(direction)) obj_speed = velocity.length() # Compute the angle between the object vector and wind vector by taking # the dot product and dividing by the magnitudes. d = w.length() * obj_speed if d == 0: alpha = 0 else: alpha = acos((w * velocity) / d) # Get the relative wind speed and angle from the object. Note that the # relative wind speed includes the velocity of the object; i.e., there # is a headwind equivalent to the object's speed even if there is no # absolute wind. (rel_speed, beta) = apparent_wind(speed, obj_speed, alpha) # Return the vector of the relative wind, relative to the coordinate # system. relWindVec = toVec(rel_speed, beta + atan2(velocity.y, velocity.x)) # Combine them to get the acceleration vector. return Vector3( acc(relWindVec.x, drag_force(self, relWindVec.x)) , acc(relWindVec.y, drag_force(self, relWindVec.y)) , 0 ) # http://en.wikipedia.org/wiki/Apparent_wind # # Returns apparent wind speed and angle of apparent wind. Alpha is the angle # between the object and the true wind. alpha of 0 rads is a headwind; pi a # tailwind. Speeds should always be positive. def apparent_wind(wind_sp, obj_speed, alpha): delta = wind_sp * cos(alpha) x = wind_sp**2 + obj_speed**2 + 2 * obj_speed * delta rel_speed = sqrt(x) if rel_speed == 0: beta = pi else: beta = acos((delta + obj_speed) / rel_speed) return (rel_speed, beta) # See http://en.wikipedia.org/wiki/Drag_equation # # Drag equation is F(a) = cl * p/2 * v^2 * a, where cl : drag coefficient # (let's assume it's low, .e.g., 0.2), p : density of air (assume about 1 # kg/m^3, the density just over 1500m elevation), v : relative speed of wind # (to the body), a : area acted on (this is captured by the cross_section # paramter). # # So then we have # F(a) = 0.2 * 1/2 * v^2 * cross_section = 0.1 * v^2 * cross_section def drag_force(wind, sp): return (sp**2.0) * 0.1 * wind.cross_section # Function to make the force vector. relWindVec is the direction the apparent # wind comes *from*. We want to compute the accleration vector in the direction # the wind blows to. def acc(val, mag): if val == 0: return mag else: return (val / abs(val)) * (0 - mag) # Converts a magnitude and angle (radians) to a vector in the xy plane. def toVec(magnitude, angle): v = Vector3(magnitude, 0, 0) m = Matrix3() m.from_euler(0, 0, angle) return m.transposed() * v def constrain(value, minv, maxv): '''constrain a value to a range''' if value < minv: value = minv if value > maxv: value = maxv return value if __name__ == "__main__": import doctest doctest.testmod()