// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // Functions called from the setup menu static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); static int8_t setup_show (uint8_t argc, const Menu::arg *argv); static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); static int8_t setup_level (uint8_t argc, const Menu::arg *argv); #if !defined( __AVR_ATmega1280__ ) static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv); static int8_t setup_set (uint8_t argc, const Menu::arg *argv); #endif static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv); // Command/function table for the setup menu static const struct Menu::command setup_menu_commands[] PROGMEM = { // command function called // ======= =============== {"reset", setup_factory}, {"radio", setup_radio}, {"modes", setup_flightmodes}, {"level", setup_level}, #if !defined( __AVR_ATmega1280__ ) {"accel", setup_accel_scale}, #endif {"compass", setup_compass}, {"declination", setup_declination}, {"battery", setup_batt_monitor}, {"show", setup_show}, #if !defined( __AVR_ATmega1280__ ) {"set", setup_set}, #endif {"erase", setup_erase}, }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. static int8_t setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance cliSerial->printf_P(PSTR("Setup Mode\n" "\n" "IMPORTANT: if you have not previously set this system up, use the\n" "'reset' command to initialize the EEPROM to sensible default values\n" "and then the 'radio' command to configure for your radio.\n" "\n")); // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); return 0; } // Print the current configuration. // Called by the setup menu 'show' command. static int8_t setup_show(uint8_t argc, const Menu::arg *argv) { #if !defined( __AVR_ATmega1280__ ) AP_Param *param; ap_var_type type; //If a parameter name is given as an argument to show, print only that parameter if(argc>=2) { param=AP_Param::find(argv[1].str, &type); if(!param) { cliSerial->printf_P(PSTR("Parameter not found: '%s'\n"), argv[1]); return 0; } //Print differently for different types, and include parameter type in output. switch (type) { case AP_PARAM_INT8: cliSerial->printf_P(PSTR("INT8 %s: %d\n"), argv[1].str, (int)((AP_Int8 *)param)->get()); break; case AP_PARAM_INT16: cliSerial->printf_P(PSTR("INT16 %s: %d\n"), argv[1].str, (int)((AP_Int16 *)param)->get()); break; case AP_PARAM_INT32: cliSerial->printf_P(PSTR("INT32 %s: %ld\n"), argv[1].str, (long)((AP_Int32 *)param)->get()); break; case AP_PARAM_FLOAT: cliSerial->printf_P(PSTR("FLOAT %s: %f\n"), argv[1].str, ((AP_Float *)param)->get()); break; default: cliSerial->printf_P(PSTR("Unhandled parameter type for %s: %d.\n"), argv[1].str, type); break; } return 0; } #endif // clear the area print_blanks(8); report_radio(); report_batt_monitor(); report_gains(); report_xtrack(); report_throttle(); report_flight_modes(); report_ins(); report_compass(); cliSerial->printf_P(PSTR("Raw Values\n")); print_divider(); AP_Param::show_all(); return(0); } #if !defined( __AVR_ATmega1280__ ) //Set a parameter to a specified value. It will cast the value to the current type of the //parameter and make sure it fits in case of INT8 and INT16 static int8_t setup_set(uint8_t argc, const Menu::arg *argv) { int8_t value_int8; int16_t value_int16; AP_Param *param; enum ap_var_type p_type; if(argc!=3) { cliSerial->printf_P(PSTR("Invalid command. Usage: set \n")); return 0; } param = AP_Param::find(argv[1].str, &p_type); if(!param) { cliSerial->printf_P(PSTR("Param not found: %s\n"), argv[1].str); return 0; } switch(p_type) { case AP_PARAM_INT8: value_int8 = (int8_t)(argv[2].i); if(argv[2].i!=value_int8) { cliSerial->printf_P(PSTR("Value out of range for type INT8\n")); return 0; } ((AP_Int8*)param)->set_and_save(value_int8); break; case AP_PARAM_INT16: value_int16 = (int16_t)(argv[2].i); if(argv[2].i!=value_int16) { cliSerial->printf_P(PSTR("Value out of range for type INT16\n")); return 0; } ((AP_Int16*)param)->set_and_save(value_int16); break; //int32 and float don't need bounds checking, just use the value provoded by Menu::arg case AP_PARAM_INT32: ((AP_Int32*)param)->set_and_save(argv[2].i); break; case AP_PARAM_FLOAT: ((AP_Float*)param)->set_and_save(argv[2].f); break; default: cliSerial->printf_P(PSTR("Cannot set parameter of type %d.\n"), p_type); break; } return 0; } #endif // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. static int8_t setup_factory(uint8_t argc, const Menu::arg *argv) { int c; cliSerial->printf_P(PSTR("\nType 'Y' and hit Enter to perform factory reset, any other key to abort: ")); do { c = cliSerial->read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); AP_Param::erase_all(); cliSerial->printf_P(PSTR("\nFACTORY RESET complete - please reset APM to continue")); //default_flight_modes(); // This will not work here. Replacement code located in init_ardupilot() for (;; ) { } // note, cannot actually return here return(0); } // Perform radio setup. // Called by the setup menu 'radio' command. static int8_t setup_radio(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("\n\nRadio Setup:\n")); uint8_t i; for(i = 0; i < 100; i++) { delay(20); read_radio(); } if(g.channel_roll.radio_in < 500) { while(1) { cliSerial->printf_P(PSTR("\nNo radio; Check connectors.")); delay(1000); // stop here } } g.channel_roll.radio_min = g.channel_roll.radio_in; g.channel_pitch.radio_min = g.channel_pitch.radio_in; g.channel_throttle.radio_min = g.channel_throttle.radio_in; g.channel_rudder.radio_min = g.channel_rudder.radio_in; g.rc_5.radio_min = g.rc_5.radio_in; g.rc_6.radio_min = g.rc_6.radio_in; g.rc_7.radio_min = g.rc_7.radio_in; g.rc_8.radio_min = g.rc_8.radio_in; g.channel_roll.radio_max = g.channel_roll.radio_in; g.channel_pitch.radio_max = g.channel_pitch.radio_in; g.channel_throttle.radio_max = g.channel_throttle.radio_in; g.channel_rudder.radio_max = g.channel_rudder.radio_in; g.rc_5.radio_max = g.rc_5.radio_in; g.rc_6.radio_max = g.rc_6.radio_in; g.rc_7.radio_max = g.rc_7.radio_in; g.rc_8.radio_max = g.rc_8.radio_in; g.channel_roll.radio_trim = g.channel_roll.radio_in; g.channel_pitch.radio_trim = g.channel_pitch.radio_in; g.channel_rudder.radio_trim = g.channel_rudder.radio_in; g.rc_5.radio_trim = 1500; g.rc_6.radio_trim = 1500; g.rc_7.radio_trim = 1500; g.rc_8.radio_trim = 1500; cliSerial->printf_P(PSTR("\nMove all controls to each extreme. Hit Enter to save: \n")); while(1) { delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); g.channel_roll.update_min_max(); g.channel_pitch.update_min_max(); g.channel_throttle.update_min_max(); g.channel_rudder.update_min_max(); g.rc_5.update_min_max(); g.rc_6.update_min_max(); g.rc_7.update_min_max(); g.rc_8.update_min_max(); if(cliSerial->available() > 0) { while (cliSerial->available() > 0) { cliSerial->read(); } g.channel_roll.save_eeprom(); g.channel_pitch.save_eeprom(); g.channel_throttle.save_eeprom(); g.channel_rudder.save_eeprom(); g.rc_5.save_eeprom(); g.rc_6.save_eeprom(); g.rc_7.save_eeprom(); g.rc_8.save_eeprom(); print_done(); break; } } trim_radio(); report_radio(); return(0); } static int8_t setup_flightmodes(uint8_t argc, const Menu::arg *argv) { uint8_t switchPosition, mode = 0; cliSerial->printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes.")); print_hit_enter(); trim_radio(); while(1) { delay(20); read_radio(); switchPosition = readSwitch(); // look for control switch change if (oldSwitchPosition != switchPosition) { // force position 5 to MANUAL if (switchPosition > 4) { flight_modes[switchPosition] = MANUAL; } // update our current mode mode = flight_modes[switchPosition]; // update the user print_switch(switchPosition, mode); // Remember switch position oldSwitchPosition = switchPosition; } // look for stick input int16_t radioInputSwitch = radio_input_switch(); if (radioInputSwitch != 0) { mode += radioInputSwitch; while ( mode != MANUAL && mode != CIRCLE && mode != STABILIZE && mode != TRAINING && mode != FLY_BY_WIRE_A && mode != FLY_BY_WIRE_B && mode != AUTO && mode != RTL && mode != LOITER) { if (mode < MANUAL) mode = LOITER; else if (mode >LOITER) mode = MANUAL; else mode += radioInputSwitch; } // Override position 5 if(switchPosition > 4) mode = MANUAL; // save new mode flight_modes[switchPosition] = mode; // print new mode print_switch(switchPosition, mode); } // escape hatch if(cliSerial->available() > 0) { // save changes for (mode=0; mode<6; mode++) flight_modes[mode].save(); report_flight_modes(); print_done(); return (0); } } } static int8_t setup_declination(uint8_t argc, const Menu::arg *argv) { compass.set_declination(radians(argv[1].f)); report_compass(); return 0; } static int8_t setup_erase(uint8_t argc, const Menu::arg *argv) { int c; cliSerial->printf_P(PSTR("\nType 'Y' and hit Enter to erase all waypoint and parameter data, any other key to abort: ")); do { c = cliSerial->read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); zero_eeprom(); return 0; } static int8_t setup_level(uint8_t argc, const Menu::arg *argv) { startup_INS_ground(true); return 0; } #if !defined( __AVR_ATmega1280__ ) /* handle full accelerometer calibration via user dialog */ static int8_t setup_accel_scale(uint8_t argc, const Menu::arg *argv) { float trim_roll, trim_pitch; cliSerial->println_P(PSTR("Initialising gyros")); ahrs.init(); ahrs.set_fly_forward(true); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); AP_InertialSensor_UserInteractStream interact(hal.console); bool success = ins.calibrate_accel(flash_leds, &interact, trim_roll, trim_pitch); if (success) { // reset ahrs's trim to suggested values from calibration routine ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); if (g.manual_level == 0) { cliSerial->println_P(PSTR("Setting MANUAL_LEVEL to 1")); g.manual_level.set_and_save(1); } } report_ins(); return(0); } #endif static int8_t setup_compass(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft if (!compass.init()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { g.compass_enabled = true; } } else if (!strcmp_P(argv[1].str, PSTR("off"))) { g.compass_enabled = false; } else if (!strcmp_P(argv[1].str, PSTR("reset"))) { compass.set_offsets(0,0,0); } else { cliSerial->printf_P(PSTR("\nOptions:[on,off,reset]\n")); report_compass(); return 0; } g.compass_enabled.save(); report_compass(); return 0; } static int8_t setup_batt_monitor(uint8_t argc, const Menu::arg *argv) { if(argv[1].i >= 0 && argv[1].i <= 4) { g.battery_monitoring.set_and_save(argv[1].i); } else { cliSerial->printf_P(PSTR("\nOptions: 3-4")); } report_batt_monitor(); return 0; } /***************************************************************************/ // CLI reports /***************************************************************************/ static void report_batt_monitor() { //print_blanks(2); cliSerial->printf_P(PSTR("Batt Mointor\n")); print_divider(); if(g.battery_monitoring == 0) cliSerial->printf_P(PSTR("Batt monitoring disabled")); if(g.battery_monitoring == 3) cliSerial->printf_P(PSTR("Monitoring batt volts")); if(g.battery_monitoring == 4) cliSerial->printf_P(PSTR("Monitoring volts and current")); print_blanks(2); } static void report_radio() { //print_blanks(2); cliSerial->printf_P(PSTR("Radio\n")); print_divider(); // radio print_radio_values(); print_blanks(2); } static void report_gains() { //print_blanks(2); cliSerial->printf_P(PSTR("Gains\n")); print_divider(); #if APM_CONTROL == DISABLED cliSerial->printf_P(PSTR("servo roll:\n")); print_PID(&g.pidServoRoll); cliSerial->printf_P(PSTR("servo pitch:\n")); print_PID(&g.pidServoPitch); cliSerial->printf_P(PSTR("servo rudder:\n")); print_PID(&g.pidServoRudder); #endif cliSerial->printf_P(PSTR("nav roll:\n")); print_PID(&g.pidNavRoll); cliSerial->printf_P(PSTR("nav pitch airspeed:\n")); print_PID(&g.pidNavPitchAirspeed); cliSerial->printf_P(PSTR("energry throttle:\n")); print_PID(&g.pidTeThrottle); cliSerial->printf_P(PSTR("nav pitch alt:\n")); print_PID(&g.pidNavPitchAltitude); print_blanks(2); } static void report_xtrack() { //print_blanks(2); cliSerial->printf_P(PSTR("Crosstrack\n")); print_divider(); // radio cliSerial->printf_P(PSTR("XTRACK: %4.2f\n" "XTRACK angle: %d\n"), (float)g.crosstrack_gain, (int)g.crosstrack_entry_angle); print_blanks(2); } static void report_throttle() { //print_blanks(2); cliSerial->printf_P(PSTR("Throttle\n")); print_divider(); cliSerial->printf_P(PSTR("min: %d\n" "max: %d\n" "cruise: %d\n" "failsafe_enabled: %d\n" "failsafe_value: %d\n"), (int)g.throttle_min, (int)g.throttle_max, (int)g.throttle_cruise, (int)g.throttle_fs_enabled, (int)g.throttle_fs_value); print_blanks(2); } static void report_ins() { //print_blanks(2); cliSerial->printf_P(PSTR("INS\n")); print_divider(); print_gyro_offsets(); print_accel_offsets_and_scaling(); print_blanks(2); } static void report_compass() { //print_blanks(2); cliSerial->printf_P(PSTR("Compass: ")); switch (compass.product_id) { case AP_COMPASS_TYPE_HMC5883L: cliSerial->println_P(PSTR("HMC5883L")); break; case AP_COMPASS_TYPE_HMC5843: cliSerial->println_P(PSTR("HMC5843")); break; case AP_COMPASS_TYPE_HIL: cliSerial->println_P(PSTR("HIL")); break; default: cliSerial->println_P(PSTR("??")); break; } print_divider(); print_enabled(g.compass_enabled); // mag declination cliSerial->printf_P(PSTR("Mag Declination: %4.4f\n"), degrees(compass.get_declination())); Vector3f offsets = compass.get_offsets(); // mag offsets cliSerial->printf_P(PSTR("Mag offsets: %4.4f, %4.4f, %4.4f\n"), offsets.x, offsets.y, offsets.z); print_blanks(2); } static void report_flight_modes() { //print_blanks(2); cliSerial->printf_P(PSTR("Flight modes\n")); print_divider(); for(int16_t i = 0; i < 6; i++ ) { print_switch(i, flight_modes[i]); } print_blanks(2); } /***************************************************************************/ // CLI utilities /***************************************************************************/ static void print_PID(PID * pid) { cliSerial->printf_P(PSTR("P: %4.3f, I:%4.3f, D:%4.3f, IMAX:%ld\n"), pid->kP(), pid->kI(), pid->kD(), (long)pid->imax()); } static void print_radio_values() { cliSerial->printf_P(PSTR("CH1: %d | %d | %d\n"), (int)g.channel_roll.radio_min, (int)g.channel_roll.radio_trim, (int)g.channel_roll.radio_max); cliSerial->printf_P(PSTR("CH2: %d | %d | %d\n"), (int)g.channel_pitch.radio_min, (int)g.channel_pitch.radio_trim, (int)g.channel_pitch.radio_max); cliSerial->printf_P(PSTR("CH3: %d | %d | %d\n"), (int)g.channel_throttle.radio_min, (int)g.channel_throttle.radio_trim, (int)g.channel_throttle.radio_max); cliSerial->printf_P(PSTR("CH4: %d | %d | %d\n"), (int)g.channel_rudder.radio_min, (int)g.channel_rudder.radio_trim, (int)g.channel_rudder.radio_max); cliSerial->printf_P(PSTR("CH5: %d | %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_trim, (int)g.rc_5.radio_max); cliSerial->printf_P(PSTR("CH6: %d | %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_trim, (int)g.rc_6.radio_max); cliSerial->printf_P(PSTR("CH7: %d | %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_trim, (int)g.rc_7.radio_max); cliSerial->printf_P(PSTR("CH8: %d | %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_trim, (int)g.rc_8.radio_max); } static void print_switch(uint8_t p, uint8_t m) { cliSerial->printf_P(PSTR("Pos %d: "),p); print_flight_mode(m); } static void print_done() { cliSerial->printf_P(PSTR("\nSaved Settings\n\n")); } static void print_blanks(int16_t num) { while(num > 0) { num--; cliSerial->println(); } } static void print_divider(void) { for (int16_t i = 0; i < 40; i++) { cliSerial->printf_P(PSTR("-")); } cliSerial->println(); } static int8_t radio_input_switch(void) { static int8_t bouncer = 0; if (int16_t(g.channel_roll.radio_in - g.channel_roll.radio_trim) > 100) { bouncer = 10; } if (int16_t(g.channel_roll.radio_in - g.channel_roll.radio_trim) < -100) { bouncer = -10; } if (bouncer >0) { bouncer--; } if (bouncer <0) { bouncer++; } if (bouncer == 1 || bouncer == -1) { return bouncer; } else { return 0; } } static void zero_eeprom(void) { uint8_t b = 0; cliSerial->printf_P(PSTR("\nErasing EEPROM\n")); for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i++) { hal.storage->write_byte(i, b); } cliSerial->printf_P(PSTR("done\n")); } static void print_enabled(bool b) { if(b) cliSerial->printf_P(PSTR("en")); else cliSerial->printf_P(PSTR("dis")); cliSerial->printf_P(PSTR("abled\n")); } static void print_accel_offsets_and_scaling(void) { Vector3f accel_offsets = ins.get_accel_offsets(); Vector3f accel_scale = ins.get_accel_scale(); cliSerial->printf_P(PSTR("Accel offsets: %4.2f, %4.2f, %4.2f\tscale: %4.2f, %4.2f, %4.2f\n"), (float)accel_offsets.x, // Pitch (float)accel_offsets.y, // Roll (float)accel_offsets.z, // YAW (float)accel_scale.x, // Pitch (float)accel_scale.y, // Roll (float)accel_scale.z); // YAW } static void print_gyro_offsets(void) { Vector3f gyro_offsets = ins.get_gyro_offsets(); cliSerial->printf_P(PSTR("Gyro offsets: %4.2f, %4.2f, %4.2f\n"), (float)gyro_offsets.x, (float)gyro_offsets.y, (float)gyro_offsets.z); } #endif // CLI_ENABLED