// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file AC_HELI_PID.cpp /// @brief Generic PID algorithm #include #include "AC_HELI_PID.h" const AP_Param::GroupInfo AC_HELI_PID::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_HELI_PID, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_HELI_PID, _ki, 0), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 2, AC_HELI_PID, _kd, 0), // @Param: VFF // @DisplayName: Velocity FF FeedForward Gain // @Description: Velocity FF Gain which produces an output value that is proportional to the demanded input AP_GROUPINFO("VFF", 4, AC_HELI_PID, _vff, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 5, AC_HELI_PID, _imax, 0), // @Param: FILT // @DisplayName: PID Input filter frequency in Hz // @Description: PID Input filter frequency in Hz AP_GROUPINFO("FILT", 6, AC_HELI_PID, _filt_hz, AC_PID_FILT_HZ_DEFAULT), // @Param: ILMI // @DisplayName: I-term Leak Minimum // @Description: Point below which I-term will not leak down // @Range: 0 1 // @User: Advanced AP_GROUPINFO("ILMI", 7, AC_HELI_PID, _leak_min, AC_PID_LEAK_MIN), // @Param: AFF // @DisplayName: Acceleration FF FeedForward Gain // @Description: Acceleration FF Gain which produces an output value that is proportional to the change in demanded input AP_GROUPINFO("AFF", 8, AC_HELI_PID, _aff, 0), AP_GROUPEND }; /// Constructor for PID AC_HELI_PID::AC_HELI_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt, float initial_vff) : AC_PID(initial_p, initial_i, initial_d, initial_imax, initial_filt_hz, dt) { _vff = initial_vff; _aff = 0; _last_requested_rate = 0; } float AC_HELI_PID::get_vff(float requested_rate) { _pid_info.FF = (float)requested_rate * _vff; return _pid_info.FF; } float AC_HELI_PID::get_aff(float requested_rate) { float derivative; // calculate derivative if (_dt > 0.0f) { derivative = (requested_rate - _last_requested_rate) / _dt; } else { derivative = 0; } _pid_info.AFF = derivative * _aff; _last_requested_rate = requested_rate; return _pid_info.AFF; } // This is an integrator which tends to decay to zero naturally // if the error is zero. float AC_HELI_PID::get_leaky_i(float leak_rate) { if(!is_zero(_ki) && !is_zero(_dt)){ // integrator does not leak down below Leak Min if (_integrator > _leak_min){ _integrator -= (float)(_integrator - _leak_min) * leak_rate; } else if (_integrator < -_leak_min) { _integrator -= (float)(_integrator + _leak_min) * leak_rate; } _integrator += ((float)_input * _ki) * _dt; if (_integrator < -_imax) { _integrator = -_imax; } else if (_integrator > _imax) { _integrator = _imax; } _pid_info.I = _integrator; return _integrator; } return 0; }