/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /* ArduCopterMega Version 0.1.3 Experimental Authors: Jason Short Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier This firmware is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include // Libraries #include #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Arduino I2C lib #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot Mega BMP085 Library #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega IMU Library #include // ArduPilot Mega DCM Library #include // PID library #include // RC Channel Library #include // Range finder library #include // MAVLink GCS definitions // Configuration #include "config.h" // Local modules #include "defines.h" #include "Parameters.h" #include "global_data.h" #include "GCS.h" #include "HIL.h" //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port FastSerialPort3(Serial3); // Telemetry port //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // Parameters g; //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. GPS *g_gps; #if HIL_MODE == HIL_MODE_NONE // real sensors AP_ADC_ADS7844 adc; APM_BMP085_Class barometer; AP_Compass_HMC5843 compass(Parameters::k_param_compass); // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; APM_BMP085_HIL_Class barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); #elif HIL_MODE == HIL_MODE_ATTITUDE AP_DCM_HIL dcm; AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_IMU_Shim imu; // never used #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE #if HIL_MODE != HIL_MODE_DISABLED #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK GCS_MAVLINK hil; #elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE HIL_XPLANE hil; #endif // HIL PROTOCOL #endif // HIL_MODE #if HIL_MODE != HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_SENSORS AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration); // normal imu #else AP_IMU_Shim imu; // hil imu #endif AP_DCM dcm(&imu, g_gps); // normal dcm #endif //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// // #if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK GCS_MAVLINK gcs; #else // If we are not using a GCS, we need a stub that does nothing. GCS_Class gcs; #endif AP_RangeFinder_MaxsonarXL sonar; //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// byte control_mode = STABILIZE; byte oldSwitchPosition; // for remembering the control mode switch const char *comma = ","; const char* flight_mode_strings[] = { "STABILIZE", "ACRO", "ALT_HOLD", "FBW", "AUTO", "LOITER", "POSITION_HOLD", "RTL", "TAKEOFF", "LAND"}; /* Radio values Channel assignments 1 Ailerons (rudder if no ailerons) 2 Elevator 3 Throttle 4 Rudder (if we have ailerons) 5 Mode - 3 position switch 6 User assignable 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) 8 TBD */ // Radio // ----- int motor_out[4]; Vector3f omega; // Failsafe // -------- boolean failsafe; // did our throttle dip below the failsafe value? boolean ch3_failsafe; boolean motor_armed; boolean motor_auto_safe; // PIDs // ---- int max_stabilize_dampener; // int max_yaw_dampener; // boolean rate_yaw_flag; // used to transition yaw control from Rate control to Yaw hold // LED output // ---------- boolean motor_light; // status of the Motor safety boolean GPS_light; // status of the GPS light // GPS variables // ------------- const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage float scaleLongUp = 1; // used to reverse longtitude scaling float scaleLongDown = 1; // used to reverse longtitude scaling byte ground_start_count = 5; // have we achieved first lock and set Home? // Location & Navigation // --------------------- const float radius_of_earth = 6378100; // meters const float gravity = 9.81; // meters/ sec^2 long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1? byte command_must_index; // current command memory location byte command_may_index; // current command memory location byte command_must_ID; // current command ID byte command_may_ID; // current command ID float cos_roll_x = 1; float cos_pitch_x = 1; float cos_yaw_x = 1; float sin_pitch_y, sin_yaw_y, sin_roll_y; // Airspeed // -------- int airspeed; // m/s * 100 // Location Errors // --------------- long bearing_error; // deg * 100 : 0 to 36000 long altitude_error; // meters * 100 we are off in altitude float crosstrack_error; // meters we are off trackline long distance_error; // distance to the WP long yaw_error; // how off are we pointed long long_error, lat_error; // temp for debugging // Battery Sensors // --------------- float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter float current_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter float current_amps; float current_total; // Airspeed Sensors // ---------------- // Barometer Sensor variables // -------------------------- unsigned long abs_pressure; unsigned long ground_pressure; int ground_temperature; // Altitude Sensor variables // ---------------------- long sonar_alt; long baro_alt; byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR // flight mode specific // -------------------- boolean takeoff_complete; // Flag for using take-off controls boolean land_complete; int takeoff_altitude; int landing_distance; // meters; long old_alt; // used for managing altitude rates int velocity_land; // Loiter management // ----------------- long old_target_bearing; // deg * 100 int loiter_total; // deg : how many times to loiter * 360 int loiter_delta; // deg : how far we just turned int loiter_sum; // deg : how far we have turned around a waypoint long loiter_time; // millis : when we started LOITER mode int loiter_time_max; // millis : how long to stay in LOITER mode // these are the values for navigation control functions // ---------------------------------------------------- long nav_roll; // deg * 100 : target roll angle long nav_pitch; // deg * 100 : target pitch angle long nav_yaw; // deg * 100 : target yaw angle long nav_lat; // for error calcs long nav_lon; // for error calcs int nav_throttle; // 0-1000 for throttle control int nav_throttle_old; // for filtering long command_yaw_start; // what angle were we to begin with long command_yaw_start_time; // when did we start turning int command_yaw_time; // how long we are turning long command_yaw_end; // what angle are we trying to be long command_yaw_delta; // how many degrees will we turn int command_yaw_speed; // how fast to turn byte command_yaw_dir; // Waypoints // --------- long wp_distance; // meters - distance between plane and next waypoint long wp_totalDistance; // meters - distance between old and next waypoint byte next_wp_index; // Current active command index // repeating event control // ----------------------- byte event_id; // what to do - see defines long event_timer; // when the event was asked for in ms int event_delay; // how long to delay the next firing of event in millis int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice int event_value; // per command value, such as PWM for servos int event_undo_value; // the value used to undo commands byte repeat_forever; byte undo_event; // counter for timing the undo // delay command // -------------- int delay_timeout; // used to delay commands long delay_start; // used to delay commands // 3D Location vectors // ------------------- struct Location home; // home location struct Location prev_WP; // last waypoint struct Location current_loc; // current location struct Location next_WP; // next waypoint struct Location tell_command; // command for telemetry struct Location next_command; // command preloaded long target_altitude; // used for long offset_altitude; // used for boolean home_is_set; // Flag for if we have g_gps lock and have set the home location // IMU variables // ------------- float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) // Performance monitoring // ---------------------- long perf_mon_timer; float imu_health; // Metric based on accel gain deweighting int G_Dt_max; // Max main loop cycle time in milliseconds byte gyro_sat_count; byte adc_constraints; byte renorm_sqrt_count; byte renorm_blowup_count; int gps_fix_count; byte gcs_messages_sent; // GCS // --- char GCS_buffer[53]; char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed // System Timers // -------------- unsigned long fast_loopTimer; // Time in miliseconds of main control loop unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete uint8_t delta_ms_fast_loop; // Delta Time in miliseconds int mainLoop_count; unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop byte medium_loopCounter; // Counters for branching from main control loop to slower loops uint8_t delta_ms_medium_loop; byte slow_loopCounter; byte superslow_loopCounter; byte fbw_timer; // for limiting the execution of FBW input unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav unsigned long nav2_loopTimer; // used to track the elapsed ime for GPS nav unsigned long dTnav; // Delta Time in milliseconds for navigation computations unsigned long dTnav2; // Delta Time in milliseconds for navigation computations unsigned long elapsedTime; // for doing custom events float load; // % MCU cycles used byte counter_one_herz; //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { init_ardupilot(); } void loop() { // We want this to execute at 100Hz // -------------------------------- if (millis() - fast_loopTimer > 9) { delta_ms_fast_loop = millis() - fast_loopTimer; fast_loopTimer = millis(); load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop; G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); fast_loopTimeStamp = millis(); } if (millis() - medium_loopTimer > 19) { delta_ms_medium_loop = millis() - medium_loopTimer; medium_loopTimer = millis(); medium_loop(); counter_one_herz++; if(counter_one_herz == 50){ super_slow_loop(); } if (millis() - perf_mon_timer > 20000) { if (mainLoop_count != 0) { gcs.send_message(MSG_PERF_REPORT); if (g.log_bitmask & MASK_LOG_PM) Log_Write_Performance(); resetPerfData(); } } } } // Main loop 50-100Hz void fast_loop() { // IMU DCM Algorithm read_AHRS(); // This is the fast loop - we want it to execute at >= 100Hz // --------------------------------------------------------- if (delta_ms_fast_loop > G_Dt_max) G_Dt_max = delta_ms_fast_loop; // custom code/exceptions for flight modes // --------------------------------------- update_current_flight_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); } void medium_loop() { // Read radio // ---------- read_radio(); // read the radio first // reads all of the necessary trig functions for cameras, throttle, etc. update_trig(); // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS //------------------------------- case 0: medium_loopCounter++; update_GPS(); //readCommands(); if(g.compass_enabled){ compass.read(); // Read magnetometer compass.calculate(dcm.roll, dcm.pitch); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); } break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; if(g_gps->new_data){ g_gps->new_data = false; dTnav = millis() - nav_loopTimer; nav_loopTimer = millis(); // calculate the plane's desired bearing // ------------------------------------- navigate(); } // calc pitch and roll to target // ----------------------------- dTnav2 = millis() - nav2_loopTimer; nav2_loopTimer = millis(); calc_nav(); break; // command processing //------------------- case 2: medium_loopCounter++; // Read altitude from sensors // ------------------ update_alt(); // perform next command // -------------------- update_commands(); break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; if (g.log_bitmask & MASK_LOG_ATTITUDE_MED && (g.log_bitmask & MASK_LOG_ATTITUDE_FAST == 0)) Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor); if (g.log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); if (g.log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); if (g.log_bitmask & MASK_LOG_GPS){ if(home_is_set) Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats); } gcs.send_message(MSG_ATTITUDE); // Sends attitude data break; // This case controls the slow loop //--------------------------------- case 4: if (g.current_enabled){ read_current(); } // shall we trim the copter? // ------------------------ read_trim_switch(); // shall we check for engine start? // -------------------------------- arm_motors(); medium_loopCounter = 0; slow_loop(); break; default: medium_loopCounter = 0; break; } // stuff that happens at 50 hz // --------------------------- // use Yaw to find our bearing error calc_bearing_error(); // guess how close we are - fixed observer calc //calc_distance_error(); if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor); if (g.log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); #if GCS_PROTOCOL == 6 // This is here for Benjamin Pelletier. Please do not remove without checking with me. Doug W readgcsinput(); #endif #if ENABLE_CAM camera_stabilization(); #endif // kick the GCS to process uplink data gcs.update(); } void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter){ case 0: slow_loopCounter++; superslow_loopCounter++; if(superslow_loopCounter >= 200){ // Execute every minute #if HIL_MODE != HIL_MODE_ATTITUDE if(g.compass_enabled) { compass.save_offsets(); } #endif superslow_loopCounter = 0; } break; case 1: slow_loopCounter++; // Read 3-position switch on radio // ------------------------------- read_control_switch(); // Read main battery voltage if hooked up - does not read the 5v from radio // ------------------------------------------------------------------------ #if BATTERY_EVENT == 1 read_battery(); #endif break; case 2: slow_loopCounter = 0; update_events(); // XXX this should be a "GCS slow loop" interface #if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK gcs.data_stream_send(1,5); // send all requested output streams with rates requested // between 1 and 5 Hz #else gcs.send_message(MSG_LOCATION); // XXX gcs.send_message(MSG_CPU_LOAD, load*100); #endif gcs.send_message(MSG_HEARTBEAT); // XXX This is running at 3 1/3 Hz instead of 1 Hz break; default: slow_loopCounter = 0; break; } } void super_slow_loop() { if (g.log_bitmask & MASK_LOG_CUR) Log_Write_Current(); } void update_GPS(void) { g_gps->update(); update_GPS_light(); if (g_gps->new_data && g_gps->fix) { // XXX We should be sending GPS data off one of the regular loops so that we send // no-GPS-fix data too #if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK gcs.send_message(MSG_LOCATION); #endif // for performance // --------------- gps_fix_count++; if(ground_start_count > 1){ ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { SendDebugln("!! bad loc"); ground_start_count = 5; }else{ //Serial.printf("init Home!"); if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); // reset our nav loop timer nav_loopTimer = millis(); init_home(); // init altitude current_loc.alt = g_gps->altitude; ground_start_count = 0; } } current_loc.lng = g_gps->longitude; // Lon * 10 * *7 current_loc.lat = g_gps->latitude; // Lat * 10 * *7 } } void update_current_flight_mode(void) { if(control_mode == AUTO){ switch(command_must_ID){ //case MAV_CMD_NAV_TAKEOFF: // break; //case MAV_CMD_NAV_LAND: // break; default: // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ auto_yaw(); // mix in user control control_nav_mixer(); // perform stabilzation output_stabilize_roll(); output_stabilize_pitch(); // apply throttle control output_auto_throttle(); break; } }else{ switch(control_mode){ case ACRO: // clear any AP naviagtion values nav_pitch = 0; nav_roll = 0; // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // Yaw control output_manual_yaw(); // apply throttle control output_manual_throttle(); // mix in user control control_nav_mixer(); // perform rate or stabilzation // ---------------------------- // Roll control if(abs(g.rc_1.control_in) >= ACRO_RATE_TRIGGER){ output_rate_roll(); // rate control yaw }else{ output_stabilize_roll(); // hold yaw } // Roll control if(abs(g.rc_2.control_in) >= ACRO_RATE_TRIGGER){ output_rate_pitch(); // rate control yaw }else{ output_stabilize_pitch(); // hold yaw } break; case LOITER: case STABILIZE: // clear any AP naviagtion values nav_pitch = 0; nav_roll = 0; // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // Yaw control output_manual_yaw(); // apply throttle control output_manual_throttle(); // mix in user control control_nav_mixer(); // perform stabilzation output_stabilize_roll(); output_stabilize_pitch(); break; case FBW: // we are currently using manual throttle during alpha testing. fbw_timer++; //call at 5 hz if(fbw_timer > 20){ fbw_timer = 0; if(home_is_set == false){ scaleLongDown = 1; // we are not using GPS // reset the location // RTL won't function current_loc.lat = home.lat = 0; current_loc.lng = home.lng = 0; // set dTnav manually dTnav = 200; } next_WP.lng = home.lng + g.rc_1.control_in / 2; // X: 4500 / 2 = 2250 = 25 meteres // forward is negative so we reverse it to get a positive North translation next_WP.lat = home.lat - g.rc_2.control_in / 2; // Y: 4500 / 2 = 2250 = 25 meteres } // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // REMOVE AFTER TESTING !!! //nav_yaw = dcm.yaw_sensor; // Yaw control output_manual_yaw(); // apply throttle control output_manual_throttle(); // apply nav_pitch and nav_roll to output fbw_nav_mixer(); // perform stabilzation output_stabilize_roll(); output_stabilize_pitch(); break; case ALT_HOLD: // clear any AP naviagtion values nav_pitch = 0; nav_roll = 0; //if(g.rc_3.control_in) // get desired height from the throttle next_WP.alt = home.alt + (g.rc_3.control_in); // 0 - 1000 (40 meters) next_WP.alt = max(next_WP.alt, 30); // !!! testing //next_WP.alt -= 500; // Yaw control // ----------- output_manual_yaw(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_auto_throttle(); // mix in user control control_nav_mixer(); // perform stabilzation output_stabilize_roll(); output_stabilize_pitch(); break; case RTL: // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ auto_yaw(); // apply throttle control output_auto_throttle(); // mix in user control control_nav_mixer(); // perform stabilzation output_stabilize_roll(); output_stabilize_pitch(); break; case POSITION_HOLD: // Yaw control // ----------- output_manual_yaw(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_auto_throttle(); // mix in user control control_nav_mixer(); // perform stabilzation output_stabilize_roll(); output_stabilize_pitch(); break; default: //Serial.print("$"); break; } } } // called after a GPS read void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ // distance and bearing calcs only if(control_mode == AUTO){ verify_must(); verify_may(); }else{ switch(control_mode){ case RTL: update_crosstrack(); break; } } } void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------- dcm.update_DCM(G_Dt); omega = dcm.get_gyro(); // Testing remove !!! //dcm.pitch_sensor = 0; //dcm.roll_sensor = 0; } void update_trig(void){ Vector2f yawvector; Matrix3f temp = dcm.get_dcm_matrix(); yawvector.x = temp.a.x; // sin yawvector.y = temp.b.x; // cos yawvector.normalize(); cos_yaw_x = yawvector.y; // 0 x = north sin_yaw_y = yawvector.x; // 1 y sin_pitch_y = -temp.c.x; cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x)); cos_roll_x = temp.c.z / cos_pitch_x; sin_roll_y = temp.c.y / cos_pitch_x; } void update_alt() { altitude_sensor = BARO; baro_alt = read_barometer(); //Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt); if(g.sonar_enabled){ // decide which sensor we're usings sonar_alt = sonar.read(); if(baro_alt < 550){ altitude_sensor = SONAR; } if(sonar_alt > 600){ altitude_sensor = BARO; } //altitude_sensor = (target_altitude > (home.alt + 500)) ? BARO : SONAR; if(altitude_sensor == BARO){ current_loc.alt = baro_alt + home.alt; }else{ sonar_alt = min(sonar_alt, 600); current_loc.alt = sonar_alt + home.alt; } }else{ // no sonar altitude current_loc.alt = baro_alt + home.alt; } //Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt); // altitude smoothing // ------------------ calc_altitude_error(); // Amount of throttle to apply for hovering // ---------------------------------------- calc_nav_throttle(); }