/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include #include "AP_InertialSensor_MPU6000.h" extern const AP_HAL::HAL& hal; // MPU6000 accelerometer scaling #define MPU6000_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f) #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 #define MPU6000_DRDY_PIN 70 #elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBOARD || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF #define MPU6000_DRDY_PIN BBB_P8_14 #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT #define MPU6000_DRDY_PIN RPI_GPIO_24 #endif #endif // MPU 6000 registers #define MPUREG_XG_OFFS_TC 0x00 #define MPUREG_YG_OFFS_TC 0x01 #define MPUREG_ZG_OFFS_TC 0x02 #define MPUREG_X_FINE_GAIN 0x03 #define MPUREG_Y_FINE_GAIN 0x04 #define MPUREG_Z_FINE_GAIN 0x05 #define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte) #define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte) #define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte) #define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte) #define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte) #define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte) #define MPUREG_PRODUCT_ID 0x0C // Product ID Register #define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte) #define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte) #define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte) #define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte) #define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte) #define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte) #define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(+1) = 200Hz # define MPUREG_SMPLRT_1000HZ 0x00 # define MPUREG_SMPLRT_500HZ 0x01 # define MPUREG_SMPLRT_250HZ 0x03 # define MPUREG_SMPLRT_200HZ 0x04 # define MPUREG_SMPLRT_100HZ 0x09 # define MPUREG_SMPLRT_50HZ 0x13 #define MPUREG_CONFIG 0x1A #define MPUREG_GYRO_CONFIG 0x1B // bit definitions for MPUREG_GYRO_CONFIG # define BITS_GYRO_FS_250DPS 0x00 # define BITS_GYRO_FS_500DPS 0x08 # define BITS_GYRO_FS_1000DPS 0x10 # define BITS_GYRO_FS_2000DPS 0x18 # define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits # define BITS_GYRO_ZGYRO_SELFTEST 0x20 # define BITS_GYRO_YGYRO_SELFTEST 0x40 # define BITS_GYRO_XGYRO_SELFTEST 0x80 #define MPUREG_ACCEL_CONFIG 0x1C #define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this #define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms #define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation. #define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms. #define MPUREG_FIFO_EN 0x23 # define BIT_TEMP_FIFO_EN 0x80 # define BIT_XG_FIFO_EN 0x40 # define BIT_YG_FIFO_EN 0x20 # define BIT_ZG_FIFO_EN 0x10 # define BIT_ACCEL_FIFO_EN 0x08 # define BIT_SLV2_FIFO_EN 0x04 # define BIT_SLV1_FIFO_EN 0x02 # define BIT_SLV0_FIFI_EN0 0x01 #define MPUREG_I2C_MST_CTRL 0x24 # define BIT_I2C_MST_P_NSR 0x10 # define BIT_I2C_MST_CLK_400KHZ 0x0D #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_I2C_SLV1_ADDR 0x28 #define MPUREG_I2C_SLV2_ADDR 0x2B #define MPUREG_I2C_SLV3_ADDR 0x2E #define MPUREG_INT_PIN_CFG 0x37 # define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs # define BIT_LATCH_INT_EN 0x20 // latch data ready pin #define MPUREG_I2C_SLV4_CTRL 0x34 #define MPUREG_INT_ENABLE 0x38 // bit definitions for MPUREG_INT_ENABLE # define BIT_RAW_RDY_EN 0x01 # define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems # define BIT_UNKNOWN_INT_EN 0x04 # define BIT_I2C_MST_INT_EN 0x08 # define BIT_FIFO_OFLOW_EN 0x10 # define BIT_ZMOT_EN 0x20 # define BIT_MOT_EN 0x40 # define BIT_FF_EN 0x80 #define MPUREG_INT_STATUS 0x3A // bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired) # define BIT_RAW_RDY_INT 0x01 # define BIT_DMP_INT 0x02 # define BIT_UNKNOWN_INT 0x04 # define BIT_I2C_MST_INT 0x08 # define BIT_FIFO_OFLOW_INT 0x10 # define BIT_ZMOT_INT 0x20 # define BIT_MOT_INT 0x40 # define BIT_FF_INT 0x80 #define MPUREG_ACCEL_XOUT_H 0x3B #define MPUREG_ACCEL_XOUT_L 0x3C #define MPUREG_ACCEL_YOUT_H 0x3D #define MPUREG_ACCEL_YOUT_L 0x3E #define MPUREG_ACCEL_ZOUT_H 0x3F #define MPUREG_ACCEL_ZOUT_L 0x40 #define MPUREG_TEMP_OUT_H 0x41 #define MPUREG_TEMP_OUT_L 0x42 #define MPUREG_GYRO_XOUT_H 0x43 #define MPUREG_GYRO_XOUT_L 0x44 #define MPUREG_GYRO_YOUT_H 0x45 #define MPUREG_GYRO_YOUT_L 0x46 #define MPUREG_GYRO_ZOUT_H 0x47 #define MPUREG_GYRO_ZOUT_L 0x48 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 #define MPUREG_I2C_MST_DELAY_CTRL 0x67 # define BIT_I2C_SLV0_DLY_EN 0x01 # define BIT_I2C_SLV1_DLY_EN 0x02 # define BIT_I2C_SLV2_DLY_EN 0x04 # define BIT_I2C_SLV3_DLY_EN 0x08 #define MPUREG_USER_CTRL 0x6A // bit definitions for MPUREG_USER_CTRL # define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp) # define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set) # define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer # define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP # define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface # define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors # define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations # define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device #define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode #define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers) #define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory) #define MPUREG_MEM_R_W 0x6F // DMP related register #define MPUREG_DMP_CFG_1 0x70 // DMP related register #define MPUREG_DMP_CFG_2 0x71 // DMP related register #define MPUREG_FIFO_COUNTH 0x72 #define MPUREG_FIFO_COUNTL 0x73 #define MPUREG_FIFO_R_W 0x74 #define MPUREG_WHOAMI 0x75 #define BIT_READ_FLAG 0x80 #define BIT_I2C_SLVX_EN 0x80 // Configuration bits MPU 3000 and MPU 6000 (not revised)? #define BITS_DLPF_CFG_256HZ_NOLPF2 0x00 #define BITS_DLPF_CFG_188HZ 0x01 #define BITS_DLPF_CFG_98HZ 0x02 #define BITS_DLPF_CFG_42HZ 0x03 #define BITS_DLPF_CFG_20HZ 0x04 #define BITS_DLPF_CFG_10HZ 0x05 #define BITS_DLPF_CFG_5HZ 0x06 #define BITS_DLPF_CFG_2100HZ_NOLPF 0x07 #define BITS_DLPF_CFG_MASK 0x07 // Product ID Description for MPU6000 // high 4 bits low 4 bits // Product Name Product Revision #define MPU6000ES_REV_C4 0x14 // 0001 0100 #define MPU6000ES_REV_C5 0x15 // 0001 0101 #define MPU6000ES_REV_D6 0x16 // 0001 0110 #define MPU6000ES_REV_D7 0x17 // 0001 0111 #define MPU6000ES_REV_D8 0x18 // 0001 1000 #define MPU6000_REV_C4 0x54 // 0101 0100 #define MPU6000_REV_C5 0x55 // 0101 0101 #define MPU6000_REV_D6 0x56 // 0101 0110 #define MPU6000_REV_D7 0x57 // 0101 0111 #define MPU6000_REV_D8 0x58 // 0101 1000 #define MPU6000_REV_D9 0x59 // 0101 1001 #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) #define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]) /* SPI bus driver implementation */ AP_MPU6000_BusDriver_SPI::AP_MPU6000_BusDriver_SPI(void) : _error_count(0) { _spi = hal.spi->device(AP_HAL::SPIDevice_MPU6000); } void AP_MPU6000_BusDriver_SPI::init() { /* Disable I2C bus if SPI selected (Recommended in Datasheet to be done * just after the device is reset) */ write8(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS); } void AP_MPU6000_BusDriver_SPI::start(bool &fifo_mode, uint8_t &max_samples) { fifo_mode = false; _error_count = 0; /* maximum number of samples read by a burst * a sample is an array containing : * gyro_x * gyro_y * gyro_z * accel_x * accel_y * accel_z */ max_samples = 1; }; /* * This implementation is limited to a block of at most 32 bytes */ void AP_MPU6000_BusDriver_SPI::read_block(uint8_t reg, uint8_t *buf, uint32_t size) { assert(size < 32); reg |= BIT_READ_FLAG; uint8_t tx[32] = { reg, }; uint8_t rx[32] = { }; _spi->transaction(tx, rx, size + 1); memcpy(buf, rx + 1, size); } void AP_MPU6000_BusDriver_SPI::read8(uint8_t reg, uint8_t *val) { uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _spi->transaction(tx, rx, 2); *val = rx[1]; } void AP_MPU6000_BusDriver_SPI::write8(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _spi->transaction(tx, rx, 2); } void AP_MPU6000_BusDriver_SPI::set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed) { _spi->set_bus_speed(speed); } void AP_MPU6000_BusDriver_SPI::read_data_transaction(uint8_t *samples, AP_HAL::DigitalSource *_drdy_pin, uint8_t &n_samples) { /* one register address followed by seven 2-byte registers */ struct PACKED { uint8_t cmd; uint8_t int_status; uint8_t d[14]; } rx, tx = { cmd : MPUREG_INT_STATUS | 0x80, }; _spi->transaction((const uint8_t *)&tx, (uint8_t *)&rx, sizeof(rx)); /* detect a bad SPI bus transaction by looking for all 14 bytes zero. This can happen with some boards with hw that end up needing a lower bus speed */ uint8_t i; for (i=0; i<14; i++) { if (rx.d[i] != 0) break; } if (i == 14) { // likely a bad bus transaction if (++_error_count > 4) { set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); } } n_samples = 1; /* remove temperature and cmd from data sample */ memcpy(&samples[0], &rx.d[0], 6); memcpy(&samples[6], &rx.d[8], 6); return; } AP_HAL::Semaphore* AP_MPU6000_BusDriver_SPI::get_semaphore() { return _spi->get_semaphore(); } bool AP_MPU6000_BusDriver_SPI::has_auxiliar_bus() { return true; } /* I2C bus driver implementation */ AP_MPU6000_BusDriver_I2C::AP_MPU6000_BusDriver_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) : _addr(addr), _i2c(i2c), _i2c_sem(NULL) {} void AP_MPU6000_BusDriver_I2C::init() { } void AP_MPU6000_BusDriver_I2C::start(bool &fifo_mode, uint8_t &max_samples) { // enable fifo mode fifo_mode = true; write8(MPUREG_FIFO_EN, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN | BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN); write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET | BIT_USER_CTRL_SIG_COND_RESET); write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_EN); /* maximum number of samples read by a burst * a sample is an array containing : * gyro_x * gyro_y * gyro_z * accel_x * accel_y * accel_z */ max_samples = MPU6000_MAX_FIFO_SAMPLES; } void AP_MPU6000_BusDriver_I2C::read8(uint8_t reg, uint8_t *val) { _i2c->readRegister(_addr, reg, val); } void AP_MPU6000_BusDriver_I2C::read_block(uint8_t reg, uint8_t *buf, uint32_t size) { _i2c->readRegisters(_addr, reg, size, buf); } void AP_MPU6000_BusDriver_I2C::write8(uint8_t reg, uint8_t val) { _i2c->writeRegister(_addr, reg, val); } void AP_MPU6000_BusDriver_I2C::set_bus_speed(AP_HAL::SPIDeviceDriver::bus_speed speed) {} void AP_MPU6000_BusDriver_I2C::read_data_transaction(uint8_t *samples, AP_HAL::DigitalSource *_drdy_pin, uint8_t &n_samples) { uint16_t bytes_read; uint8_t ret = 0; ret = _i2c->readRegisters(_addr, MPUREG_FIFO_COUNTH, 2, _rx); if(ret != 0) { hal.console->printf_P(PSTR("MPU6000: error in i2c read\n")); n_samples = 0; return; } bytes_read = uint16_val(_rx, 0); n_samples = bytes_read / MPU6000_SAMPLE_SIZE; if(n_samples > 3) { hal.console->printf_P(PSTR("bytes_read = %d, n_samples %d > 3, dropping samples\n"), bytes_read, n_samples); /* Too many samples, do a FIFO RESET */ write8(MPUREG_USER_CTRL, 0); write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_RESET | BIT_USER_CTRL_SIG_COND_RESET); write8(MPUREG_USER_CTRL, BIT_USER_CTRL_FIFO_EN); n_samples = 0; return; } else if (n_samples == 0) { /* Not enough data in FIFO */ return; } else { ret = _i2c->readRegisters(_addr, MPUREG_FIFO_R_W, n_samples * MPU6000_SAMPLE_SIZE, _rx); } if(ret != 0) { hal.console->printf_P(PSTR("MPU6000: error in i2c read %d bytes\n"), n_samples * MPU6000_SAMPLE_SIZE); n_samples = 0; return; } memcpy(samples, _rx, n_samples * MPU6000_SAMPLE_SIZE); return; } AP_HAL::Semaphore* AP_MPU6000_BusDriver_I2C::get_semaphore() { return _i2c->get_semaphore(); } bool AP_MPU6000_BusDriver_I2C::has_auxiliar_bus() { return false; } /* * RM-MPU-6000A-00.pdf, page 33, section 4.25 lists LSB sensitivity of * gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3) */ const float AP_InertialSensor_MPU6000::_gyro_scale = (0.0174532f / 16.4f); /* * RM-MPU-6000A-00.pdf, page 31, section 4.23 lists LSB sensitivity of * accel as 4096 LSB/mg at scale factor of +/- 8g (AFS_SEL==2) * * See note below about accel scaling of engineering sample MPU6k * variants however */ AP_InertialSensor_MPU6000::AP_InertialSensor_MPU6000(AP_InertialSensor &imu, AP_MPU6000_BusDriver *bus) : AP_InertialSensor_Backend(imu), _drdy_pin(NULL), _bus(bus), _bus_sem(NULL), _last_accel_filter_hz(-1), _last_gyro_filter_hz(-1), #if MPU6000_FAST_SAMPLING _accel_filter(1000, 15), _gyro_filter(1000, 15), #else _sample_count(0), _accel_sum(), _gyro_sum(), #endif _sum_count(0), _samples(NULL) { } AP_InertialSensor_MPU6000::~AP_InertialSensor_MPU6000() { delete _bus; delete _auxiliar_bus; delete _samples; } /* Detect the sensor on SPI bus. It must have a corresponding device on * SPIDriver table */ AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect_spi(AP_InertialSensor &imu) { AP_MPU6000_BusDriver *bus = new AP_MPU6000_BusDriver_SPI(); if (!bus) return nullptr; return _detect(imu, bus, HAL_INS_MPU60XX_SPI); } /* Detect the sensor on the specified I2C bus and address */ AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::detect_i2c(AP_InertialSensor &imu, AP_HAL::I2CDriver *i2c, uint8_t addr) { AP_MPU6000_BusDriver *bus = new AP_MPU6000_BusDriver_I2C(i2c, addr); if (!bus) return nullptr; return _detect(imu, bus); } /* Common detection method - it takes ownership of the bus, freeing it if it's * not possible to return an AP_InertialSensor_Backend */ AP_InertialSensor_Backend *AP_InertialSensor_MPU6000::_detect(AP_InertialSensor &_imu, AP_MPU6000_BusDriver *bus, int16_t id) { AP_InertialSensor_MPU6000 *sensor = new AP_InertialSensor_MPU6000(_imu, bus); if (sensor == NULL) { delete bus; return nullptr; } if (!sensor->_init_sensor()) { delete sensor; return nullptr; } sensor->_id = id; return sensor; } bool AP_InertialSensor_MPU6000::_init_sensor(void) { _bus_sem = _bus->get_semaphore(); #ifdef MPU6000_DRDY_PIN _drdy_pin = hal.gpio->channel(MPU6000_DRDY_PIN); _drdy_pin->mode(HAL_GPIO_INPUT); #endif hal.scheduler->suspend_timer_procs(); bool success = _hardware_init(); hal.scheduler->resume_timer_procs(); #if MPU6000_DEBUG _dump_registers(); #endif return success; } void AP_InertialSensor_MPU6000::start() { uint8_t max_samples; hal.scheduler->suspend_timer_procs(); if (!_bus_sem->take(100)) { hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore")); } // initially run the bus at low speed _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // only used for wake-up in accelerometer only low power mode _register_write(MPUREG_PWR_MGMT_2, 0x00); hal.scheduler->delay(1); _bus->start(_fifo_mode, max_samples); /* each sample is on 16 bits */ _samples = new uint8_t[max_samples * MPU6000_SAMPLE_SIZE]; hal.scheduler->delay(1); #if MPU6000_FAST_SAMPLING _sample_count = 1; #else // sample rate and filtering // to minimise the effects of aliasing we choose a filter // that is less than half of the sample rate switch (_imu.get_sample_rate()) { case AP_InertialSensor::RATE_50HZ: // this is used for plane and rover, where noise resistance is // more important than update rate. Tests on an aerobatic plane // show that 10Hz is fine, and makes it very noise resistant _sample_count = 4; break; case AP_InertialSensor::RATE_100HZ: _sample_count = 2; break; case AP_InertialSensor::RATE_200HZ: _sample_count = 1; break; default: return; } #endif #if MPU6000_FAST_SAMPLING // disable sensor filtering _set_filter_register(256); // set sample rate to 1000Hz and apply a software filter // In this configuration, the gyro sample rate is 8kHz // Therefore the sample rate value is 8kHz/(SMPLRT_DIV + 1) // So we have to set it to 7 to have a 1kHz sampling // rate on the gyro _register_write(MPUREG_SMPLRT_DIV, 7); #else _set_filter_register(_accel_filter_cutoff()); // set sample rate to 200Hz, and use _sample_divider to give // the requested rate to the application _register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_200HZ); #endif hal.scheduler->delay(1); _register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000ยบ/s hal.scheduler->delay(1); // read the product ID rev c has 1/2 the sensitivity of rev d _product_id = _register_read(MPUREG_PRODUCT_ID); //Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id); if ((_product_id == MPU6000ES_REV_C4) || (_product_id == MPU6000ES_REV_C5) || (_product_id == MPU6000_REV_C4) || (_product_id == MPU6000_REV_C5)) { // Accel scale 8g (4096 LSB/g) // Rev C has different scaling than rev D _register_write(MPUREG_ACCEL_CONFIG,1<<3); } else { // Accel scale 8g (4096 LSB/g) _register_write(MPUREG_ACCEL_CONFIG,2<<3); } hal.scheduler->delay(1); // configure interrupt to fire when new data arrives _register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN); hal.scheduler->delay(1); // clear interrupt on any read, and hold the data ready pin high // until we clear the interrupt _register_write(MPUREG_INT_PIN_CFG, BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN); // now that we have initialised, we set the SPI bus speed to high _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _bus_sem->give(); // grab the used instances _gyro_instance = _imu.register_gyro(); _accel_instance = _imu.register_accel(); _set_accel_sample_rate(_accel_instance, 1000); hal.scheduler->resume_timer_procs(); // start the timer process to read samples hal.scheduler->register_timer_process( FUNCTOR_BIND_MEMBER(&AP_InertialSensor_MPU6000::_poll_data, void)); } /* process any */ bool AP_InertialSensor_MPU6000::update( void ) { #if !MPU6000_FAST_SAMPLING if (_sum_count < _sample_count) { // we don't have enough samples yet return false; } #endif // we have a full set of samples uint16_t num_samples; Vector3f accel, gyro; hal.scheduler->suspend_timer_procs(); #if MPU6000_FAST_SAMPLING gyro = _gyro_filtered; accel = _accel_filtered; num_samples = 1; #else gyro(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z); accel(_accel_sum.x, _accel_sum.y, _accel_sum.z); num_samples = _sum_count; _accel_sum.zero(); _gyro_sum.zero(); #endif _sum_count = 0; hal.scheduler->resume_timer_procs(); gyro /= num_samples; accel /= num_samples; _publish_accel(_accel_instance, accel); _publish_gyro(_gyro_instance, gyro); #if MPU6000_FAST_SAMPLING if (_last_accel_filter_hz != _accel_filter_cutoff()) { _accel_filter.set_cutoff_frequency(1000, _accel_filter_cutoff()); _last_accel_filter_hz = _accel_filter_cutoff(); } if (_last_gyro_filter_hz != _gyro_filter_cutoff()) { _gyro_filter.set_cutoff_frequency(1000, _gyro_filter_cutoff()); _last_gyro_filter_hz = _gyro_filter_cutoff(); } #else if (_last_accel_filter_hz != _accel_filter_cutoff()) { if (_bus_sem->take(10)) { _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); _set_filter_register(_accel_filter_cutoff()); _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _bus_sem->give(); _last_accel_filter_hz = _accel_filter_cutoff(); } } #endif return true; } AuxiliaryBus *AP_InertialSensor_MPU6000::get_auxiliar_bus() { if (_auxiliar_bus) return _auxiliar_bus; if (_bus->has_auxiliar_bus()) _auxiliar_bus = new AP_MPU6000_AuxiliaryBus(*this); return _auxiliar_bus; } /*================ HARDWARE FUNCTIONS ==================== */ /** * Return true if the MPU6000 has new data available for reading. * * We use the data ready pin if it is available. Otherwise, read the * status register. */ bool AP_InertialSensor_MPU6000::_data_ready() { if (_drdy_pin) { return _drdy_pin->read() != 0; } uint8_t status = _register_read(MPUREG_INT_STATUS); return (status & BIT_RAW_RDY_INT) != 0; } /** * Timer process to poll for new data from the MPU6000. */ void AP_InertialSensor_MPU6000::_poll_data(void) { if (!_bus_sem->take_nonblocking()) { return; } if (_fifo_mode || _data_ready()) { _read_data_transaction(); } _bus_sem->give(); } void AP_InertialSensor_MPU6000::_accumulate(uint8_t *samples, uint8_t n_samples) { for(uint8_t i=0; i < n_samples; i++) { uint8_t *data = samples + MPU6000_SAMPLE_SIZE * i; Vector3f accel, gyro; accel = Vector3f(int16_val(data, 1), int16_val(data, 0), -int16_val(data, 2)); accel *= MPU6000_ACCEL_SCALE_1G; gyro = Vector3f(int16_val(data, 4), int16_val(data, 3), -int16_val(data, 5)); gyro *= _gyro_scale; #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF accel.rotate(ROTATION_PITCH_180_YAW_90); gyro.rotate(ROTATION_PITCH_180_YAW_90); #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP accel.rotate(ROTATION_YAW_270); gyro.rotate(ROTATION_YAW_270); #endif _rotate_and_correct_accel(_accel_instance, accel); _rotate_and_correct_gyro(_gyro_instance, gyro); _notify_new_accel_raw_sample(_accel_instance, accel); #if MPU6000_FAST_SAMPLING _accel_filtered = _accel_filter.apply(accel); _gyro_filtered = _gyro_filter.apply(gyro); #else _accel_sum += accel; _gyro_sum += gyro; #endif _sum_count++; #if !MPU6000_FAST_SAMPLING if (_sum_count == 0) { // rollover - v unlikely _accel_sum.zero(); _gyro_sum.zero(); } #endif } } void AP_InertialSensor_MPU6000::_read_data_transaction() { uint8_t n_samples; _bus->read_data_transaction(_samples, _drdy_pin, n_samples); _accumulate(_samples, n_samples); } void AP_InertialSensor_MPU6000::_read_block(uint8_t reg, uint8_t *buf, uint32_t size) { _bus->read_block(reg, buf, size); } uint8_t AP_InertialSensor_MPU6000::_register_read( uint8_t reg ) { uint8_t val; _bus->read8(reg, &val); return val; } void AP_InertialSensor_MPU6000::_register_write(uint8_t reg, uint8_t val) { _bus->write8(reg, val); } /* useful when debugging SPI bus errors */ void AP_InertialSensor_MPU6000::_register_write_check(uint8_t reg, uint8_t val) { uint8_t readed; _register_write(reg, val); readed = _register_read(reg); if (readed != val){ hal.console->printf_P(PSTR("Values doesn't match; written: %02x; read: %02x "), val, readed); } #if MPU6000_DEBUG hal.console->printf_P(PSTR("Values written: %02x; readed: %02x "), val, readed); #endif } /* set the DLPF filter frequency. Assumes caller has taken semaphore */ void AP_InertialSensor_MPU6000::_set_filter_register(uint16_t filter_hz) { uint8_t filter; // choose filtering frequency if (filter_hz == 0) { filter = BITS_DLPF_CFG_256HZ_NOLPF2; } else if (filter_hz <= 5) { filter = BITS_DLPF_CFG_5HZ; } else if (filter_hz <= 10) { filter = BITS_DLPF_CFG_10HZ; } else if (filter_hz <= 20) { filter = BITS_DLPF_CFG_20HZ; } else if (filter_hz <= 42) { filter = BITS_DLPF_CFG_42HZ; } else if (filter_hz <= 98) { filter = BITS_DLPF_CFG_98HZ; } else { filter = BITS_DLPF_CFG_256HZ_NOLPF2; } _register_write(MPUREG_CONFIG, filter); } bool AP_InertialSensor_MPU6000::_hardware_init(void) { if (!_bus_sem->take(100)) { hal.scheduler->panic(PSTR("MPU6000: Unable to get semaphore")); } // initially run the bus at low speed (500kHz on APM2) _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // Chip reset uint8_t tries; for (tries = 0; tries<5; tries++) { uint8_t user_ctrl = _register_read(MPUREG_USER_CTRL); /* First disable the master I2C to avoid hanging the slaves on the * aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus * is used */ if (user_ctrl & BIT_USER_CTRL_I2C_MST_EN) { _register_write(MPUREG_USER_CTRL, user_ctrl & ~BIT_USER_CTRL_I2C_MST_EN); hal.scheduler->delay(10); } /* reset device */ _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); hal.scheduler->delay(100); /* bus-dependent initialization*/ _bus->init(); // Wake up device and select GyroZ clock. Note that the // MPU6000 starts up in sleep mode, and it can take some time // for it to come out of sleep _register_write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_ZGYRO); hal.scheduler->delay(5); // check it has woken up if (_register_read(MPUREG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_ZGYRO) break; hal.scheduler->delay(10); if (_data_ready()) break; #if MPU6000_DEBUG _dump_registers(); #endif } if (tries == 5) { hal.console->println_P(PSTR("Failed to boot MPU6000 5 times")); goto fail_tries; } _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _bus_sem->give(); return true; fail_tries: _bus->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _bus_sem->give(); return false; } #if MPU6000_DEBUG // dump all config registers - used for debug void AP_InertialSensor_MPU6000::_dump_registers(void) { hal.console->println_P(PSTR("MPU6000 registers")); if (_bus_sem->take(100)) { for (uint8_t reg=MPUREG_PRODUCT_ID; reg<=108; reg++) { uint8_t v = _register_read(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (MPUREG_PRODUCT_ID-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); _bus_sem->give(); } } #endif AP_MPU6000_AuxiliaryBusSlave::AP_MPU6000_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr, uint8_t instance) : AuxiliaryBusSlave(bus, addr, instance) , _mpu6000_addr(MPUREG_I2C_SLV0_ADDR + _instance * 3) , _mpu6000_reg(_mpu6000_addr + 1) , _mpu6000_ctrl(_mpu6000_addr + 2) , _mpu6000_do(MPUREG_I2C_SLV0_DO + _instance) { } int AP_MPU6000_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size, uint8_t *out) { auto backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); uint8_t addr; /* Ensure the slave read/write is disabled before changing the registers */ backend._register_write(_mpu6000_ctrl, 0); if (out) { backend._register_write(_mpu6000_do, *out); addr = _addr; } else { addr = _addr | BIT_READ_FLAG; } backend._register_write(_mpu6000_addr, addr); backend._register_write(_mpu6000_reg, reg); backend._register_write(_mpu6000_ctrl, BIT_I2C_SLVX_EN | size); return 0; } int AP_MPU6000_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf, uint8_t size) { assert(buf); if (_registered) { hal.console->println_P(PSTR("Error: can't passthrough when slave is already configured")); return -1; } int r = _set_passthrough(reg, size); if (r < 0) return r; /* wait the value to be read from the slave and read it back */ hal.scheduler->delay(10); auto backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); backend._read_block(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, size); /* disable new reads */ backend._register_write(_mpu6000_ctrl, 0); return size; } int AP_MPU6000_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val) { if (_registered) { hal.console->println_P(PSTR("Error: can't passthrough when slave is already configured")); return -1; } int r = _set_passthrough(reg, 1, &val); if (r < 0) return r; /* wait the value to be written to the slave */ hal.scheduler->delay(10); auto backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); /* disable new writes */ backend._register_write(_mpu6000_ctrl, 0); return 0; } int AP_MPU6000_AuxiliaryBusSlave::read(uint8_t *buf) { if (!_registered) { hal.console->println_P(PSTR("Error: can't read before configuring slave")); return -1; } auto backend = AP_InertialSensor_MPU6000::from(_bus.get_backend()); backend._read_block(MPUREG_EXT_SENS_DATA_00 + _ext_sens_data, buf, _sample_size); return 0; } /* MPU6000 provides up to 5 slave devices, but the 5th is way too different to * configure and is seldom used */ AP_MPU6000_AuxiliaryBus::AP_MPU6000_AuxiliaryBus(AP_InertialSensor_MPU6000 &backend) : AuxiliaryBus(backend, 4) { } AP_HAL::Semaphore *AP_MPU6000_AuxiliaryBus::get_semaphore() { return static_cast(_ins_backend)._bus_sem; } AuxiliaryBusSlave *AP_MPU6000_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance) { /* Enable slaves on MPU6000 if this is the first time */ if (_ext_sens_data == 0) _configure_slaves(); return new AP_MPU6000_AuxiliaryBusSlave(*this, addr, instance); } void AP_MPU6000_AuxiliaryBus::_configure_slaves() { auto backend = AP_InertialSensor_MPU6000::from(_ins_backend); uint8_t user_ctrl; user_ctrl = backend._register_read(MPUREG_USER_CTRL); backend._register_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN); /* stop condition between reads; clock at 400kHz */ backend._register_write(MPUREG_I2C_MST_CTRL, BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ); /* Hard-code divider for internal sample rate, 1 kHz, resulting in a * sample rate of 100Hz */ backend._register_write(MPUREG_I2C_SLV4_CTRL, 9); /* All slaves are subject to the sample rate */ backend._register_write(MPUREG_I2C_MST_DELAY_CTRL, BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN | BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN); } int AP_MPU6000_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave, uint8_t reg, uint8_t size) { if (_ext_sens_data + size > MAX_EXT_SENS_DATA) return -1; AP_MPU6000_AuxiliaryBusSlave *mpu_slave = static_cast(slave); mpu_slave->_set_passthrough(reg, size); mpu_slave->_ext_sens_data = _ext_sens_data; _ext_sens_data += size; return 0; }