/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * AntennaTracker parameter definitions * */ #define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} } #define ASCALAR(v, name, def) { aparm.v.vtype, name, Parameters::k_param_ ## v, &aparm.v, {def_value : def} } #define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} } #define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} } #define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &v, {group_info : class::var_info} } const AP_Param::Info var_info[] PROGMEM = { GSCALAR(format_version, "FORMAT_VERSION", 0), GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type), // @Param: SYSID_THISMAV // @DisplayName: MAVLink system ID // @Description: The identifier of this device in the MAVLink protocol // @Range: 1 255 // @User: Advanced GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID), // @Param: SYSID_MYGCS // @DisplayName: Ground station MAVLink system ID // @Description: The identifier of the ground station in the MAVLink protocol. Don't change this unless you also modify the ground station to match. // @Range: 1 255 // @User: Advanced GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255), // @Param: SYSID_TARGET // @DisplayName: Target vehicle's MAVLink system ID // @Description: The identifier of the vehicle being tracked. This should be zero (to auto detect) or be the same as the SYSID_THISMAV parameter of the vehicle being tracked. // @Range: 1 255 // @User: Advanced GSCALAR(sysid_target, "SYSID_TARGET", 0), // @Param: MAG_ENABLE // @DisplayName: Enable Compass // @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1. // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(compass_enabled, "MAG_ENABLE", 1), // @Param: YAW_SLEW_TIME // @DisplayName: Time for yaw to slew through its full range // @Description: This controls how rapidly the tracker will change the servo output for yaw. It is set as the number of seconds to do a full rotation. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update. // @Units: seconds // @Increment: 0.1 // @Range: 0 20 // @User: Standard GSCALAR(yaw_slew_time, "YAW_SLEW_TIME", 2), // @Param: PITCH_SLEW_TIME // @DisplayName: Time for pitch to slew through its full range // @Description: This controls how rapidly the tracker will change the servo output for pitch. It is set as the number of seconds to do a full range of pitch movement. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update. // @Units: seconds // @Increment: 0.1 // @Range: 0 20 // @User: Standard GSCALAR(pitch_slew_time, "PITCH_SLEW_TIME", 2), // @Param: SCAN_SPEED // @DisplayName: Speed at which to rotate in scan mode // @Description: This controls how rapidly the tracker will move the servos in SCAN mode // @Units: degrees/second // @Increment: 1 // @Range: 0 100 // @User: Standard GSCALAR(scan_speed, "SCAN_SPEED", 5), // @Param: MIN_REVERSE_TIME // @DisplayName: Minimum time to apply a yaw reversal // @Description: When the tracker detects it has reached the limit of servo movement in yaw it will reverse and try moving to the other extreme of yaw. This parameter controls the minimum time it should reverse for. It is used to cope with trackers that have a significant lag in movement to ensure they do move all the way around. // @Units: seconds // @Increment: 1 // @Range: 0 20 // @User: Standard GSCALAR(min_reverse_time, "MIN_REVERSE_TIME", 1), // @Param: START_LATITUDE // @DisplayName: Initial Latitude before GPS lock // @Description: Combined with START_LONGITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached. // @Units: degrees // @Increment: 0.000001 // @Range: -90 90 // @User: Standard GSCALAR(start_latitude, "START_LATITUDE", 0), // @Param: START_LONGITUDE // @DisplayName: Initial Longitude before GPS lock // @Description: Combined with START_LATITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached. // @Units: degrees // @Increment: 0.000001 // @Range: -180 180 // @User: Standard GSCALAR(start_longitude, "START_LONGITUDE", 0), // @Param: STARTUP_DELAY // @DisplayName: Delay before first servo movement from trim // @Description: This parameter can be used to force the servos to their trim value for a time on startup. This can help with some servo types // @Units: seconds // @Increment: 0.1 // @Range: 0 10 // @User: Standard GSCALAR(startup_delay, "STARTUP_DELAY", 0), // @Param: SERVO_TYPE // @DisplayName: Type of servo system being used // @Description: This allows selection of position servos or on/off servos // @Values: 0:Position,1:OnOff // @User: Standard GSCALAR(servo_type, "SERVO_TYPE", SERVO_TYPE_POSITION), // @Param: ONOFF_YAW_RATE // @DisplayName: Yaw rate for on/off servos // @Description: Rate of change of yaw in degrees/second for on/off servos // @Units: degrees/second // @Increment: 0.1 // @Range: 0 50 // @User: Standard GSCALAR(onoff_yaw_rate, "ONOFF_YAW_RATE", 9.0f), // @Param: ONOFF_PITCH_RATE // @DisplayName: Pitch rate for on/off servos // @Description: Rate of change of pitch in degrees/second for on/off servos // @Units: degrees/second // @Increment: 0.1 // @Range: 0 50 // @User: Standard GSCALAR(onoff_pitch_rate, "ONOFF_PITCH_RATE", 1.0f), // @Param: ONOFF_YAW_MINT // @DisplayName: Yaw minimum movement time // @Description: Minimum amount of time in seconds to move in yaw // @Units: seconds // @Increment: 0.01 // @Range: 0 2 // @User: Standard GSCALAR(onoff_yaw_mintime, "ONOFF_YAW_MINT", 0.1f), // @Param: ONOFF_PITCH_MINT // @DisplayName: Pitch minimum movement time // @Description: Minimim amount of time in seconds to move in pitch // @Units: seconds // @Increment: 0.01 // @Range: 0 2 // @User: Standard GSCALAR(onoff_pitch_mintime, "ONOFF_PITCH_MINT", 0.1f), // @Param: YAW_TRIM // @DisplayName: Yaw trim // @Description: Amount of extra yaw to add when tracking. This allows for small adjustments for an out of trim compass. // @Units: degrees // @Increment: 0.1 // @Range: -10 10 // @User: Standard GSCALAR(yaw_trim, "YAW_TRIM", 0), // @Param: PITCH_TRIM // @DisplayName: Pitch trim // @Description: Amount of extra pitch to add when tracking. This allows for small adjustments for a badly calibrated barometer. // @Units: degrees // @Increment: 0.1 // @Range: -10 10 // @User: Standard GSCALAR(pitch_trim, "PITCH_TRIM", 0), // @Param: YAW_RANGE // @DisplayName: Yaw Angle Range // @Description: Yaw axis total range of motion in degrees // @Units: degrees // @Increment: 0.1 // @Range: 0 360 // @User: Standard GSCALAR(yaw_range, "YAW_RANGE", YAW_RANGE_DEFAULT), // @Param: PITCH_RANGE // @DisplayName: Pitch Range // @Description: Pitch axis total range of motion in degrees // @Units: degrees // @Increment: 0.1 // @Range: 0 180 // @User: Standard GSCALAR(pitch_range, "PITCH_RANGE", PITCH_RANGE_DEFAULT), // @Param: DISTANCE_MIN // @DisplayName: Distance minimum to target // @Description: Tracker will track targets at least this distance away // @Units: meters // @Increment: 1 // @Range: 0 100 // @User: Standard GSCALAR(distance_min, "DISTANCE_MIN", DISTANCE_MIN_DEFAULT), // barometer ground calibration. The GND_ prefix is chosen for // compatibility with previous releases of ArduPlane // @Group: GND_ // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "GND_", AP_Baro), // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/Compass.cpp GOBJECT(compass, "COMPASS_", Compass), // @Group: SCHED_ // @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp GOBJECT(scheduler, "SCHED_", AP_Scheduler), // @Group: SR0_ // @Path: GCS_Mavlink.pde GOBJECTN(gcs[0], gcs0, "SR0_", GCS_MAVLINK), // @Group: SR1_ // @Path: GCS_Mavlink.pde GOBJECTN(gcs[1], gcs1, "SR1_", GCS_MAVLINK), #if MAVLINK_COMM_NUM_BUFFERS > 2 // @Group: SR2_ // @Path: GCS_Mavlink.pde GOBJECTN(gcs[2], gcs2, "SR2_", GCS_MAVLINK), #endif // @Group: INS_ // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp GOBJECT(ins, "INS_", AP_InertialSensor), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL // @Group: SIM_ // @Path: ../libraries/SITL/SITL.cpp GOBJECT(sitl, "SIM_", SITL), #endif // @Group: BRD_ // @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp GOBJECT(BoardConfig, "BRD_", AP_BoardConfig), // GPS driver // @Group: GPS_ // @Path: ../libraries/AP_GPS/AP_GPS.cpp GOBJECT(gps, "GPS_", AP_GPS), // RC channel //----------- // @Group: RC1_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GOBJECT(channel_yaw, "RC1_", RC_Channel), // @Group: RC2_ // @Path: ../libraries/RC_Channel/RC_Channel.cpp GOBJECT(channel_pitch, "RC2_", RC_Channel), // @Group: SERIAL // @Path: ../libraries/AP_SerialManager/AP_SerialManager.cpp GOBJECT(serial_manager, "SERIAL", AP_SerialManager), GGROUP(pidPitch2Srv, "PITCH2SRV_", PID), GGROUP(pidYaw2Srv, "YAW2SRV_", PID), // @Param: CMD_TOTAL // @DisplayName: Number of loaded mission items // @Description: Set to 1 if HOME location has been loaded by the ground station. Do not change this manually. // @Range: 1 255 // @User: Advanced GSCALAR(command_total, "CMD_TOTAL", 0), AP_VAREND }; static void load_parameters(void) { if (!g.format_version.load() || g.format_version != Parameters::k_format_version) { // erase all parameters cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n")); AP_Param::erase_all(); // save the current format version g.format_version.set_and_save(Parameters::k_format_version); cliSerial->println_P(PSTR("done.")); } else { uint32_t before = hal.scheduler->micros(); // Load all auto-loaded EEPROM variables AP_Param::load_all(); cliSerial->printf_P(PSTR("load_all took %luus\n"), hal.scheduler->micros() - before); } }