/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef HAL_DEBUG_BUILD #define AP_INLINE_VECTOR_OPS #pragma GCC optimize("O2") #endif #include "NotchFilter.h" #include const static float NOTCH_MAX_SLEW = 0.05f; const static float NOTCH_MAX_SLEW_LOWER = 1.0f - NOTCH_MAX_SLEW; const static float NOTCH_MAX_SLEW_UPPER = 1.0f / NOTCH_MAX_SLEW_LOWER; /* calculate the attenuation and quality factors of the filter */ template void NotchFilter::calculate_A_and_Q(float center_freq_hz, float bandwidth_hz, float attenuation_dB, float& A, float& Q) { A = powf(10, -attenuation_dB / 40.0f); if (center_freq_hz > 0.5 * bandwidth_hz) { const float octaves = log2f(center_freq_hz / (center_freq_hz - bandwidth_hz / 2.0f)) * 2.0f; Q = sqrtf(powf(2, octaves)) / (powf(2, octaves) - 1.0f); } else { Q = 0.0; } } /* initialise filter */ template void NotchFilter::init(float sample_freq_hz, float center_freq_hz, float bandwidth_hz, float attenuation_dB) { // check center frequency is in the allowable range initialised = false; if ((center_freq_hz > 0.5 * bandwidth_hz) && (center_freq_hz < 0.5 * sample_freq_hz)) { float A, Q; calculate_A_and_Q(center_freq_hz, bandwidth_hz, attenuation_dB, A, Q); init_with_A_and_Q(sample_freq_hz, center_freq_hz, A, Q); } } template void NotchFilter::init_with_A_and_Q(float sample_freq_hz, float center_freq_hz, float A, float Q) { // don't update if no updates required if (initialised && is_equal(center_freq_hz, _center_freq_hz) && is_equal(sample_freq_hz, _sample_freq_hz) && is_equal(A, _A)) { return; } float new_center_freq = center_freq_hz; // constrain the new center frequency by a percentage of the old frequency if (initialised && !need_reset && !is_zero(_center_freq_hz)) { new_center_freq = constrain_float(new_center_freq, _center_freq_hz * NOTCH_MAX_SLEW_LOWER, _center_freq_hz * NOTCH_MAX_SLEW_UPPER); } if (is_positive(new_center_freq) && (new_center_freq < 0.5 * sample_freq_hz) && (Q > 0.0)) { float omega = 2.0 * M_PI * new_center_freq / sample_freq_hz; float alpha = sinf(omega) / (2 * Q); b0 = 1.0 + alpha*sq(A); b1 = -2.0 * cosf(omega); b2 = 1.0 - alpha*sq(A); a1 = b1; a2 = 1.0 - alpha; const float a0_inv = 1.0/(1.0 + alpha); // Pre-multiply to save runtime calc b0 *= a0_inv; b1 *= a0_inv; b2 *= a0_inv; a1 *= a0_inv; a2 *= a0_inv; _center_freq_hz = new_center_freq; _sample_freq_hz = sample_freq_hz; _A = A; initialised = true; } else { // leave center_freq_hz at last value initialised = false; } } /* apply a new input sample, returning new output */ template T NotchFilter::apply(const T &sample) { if (!initialised || need_reset) { // if we have not been initialised when return the input // sample as output and update delayed samples signal1 = sample; signal2 = sample; ntchsig1 = sample; ntchsig2 = sample; need_reset = false; return sample; } T output = sample*b0 + ntchsig1*b1 + ntchsig2*b2 - signal1*a1 - signal2*a2; ntchsig2 = ntchsig1; ntchsig1 = sample; signal2 = signal1; signal1 = output; return output; } template void NotchFilter::reset() { need_reset = true; } #if HAL_LOGGING_ENABLED // return the frequency to log for the notch template float NotchFilter::logging_frequency() const { return initialised ? _center_freq_hz : AP::logger().quiet_nanf(); } #endif /* instantiate template classes */ template class NotchFilter; template class NotchFilter; template class NotchFilter;