#include "AP_InertialSensor.h" #include // Class level parameters const AP_Param::GroupInfo AP_InertialSensor::BatchSampler::var_info[] = { // @Param: BAT_CNT // @DisplayName: sample count per batch // @Description: Number of samples to take when logging streams of IMU sensor readings. Will be rounded down to a multiple of 32. // @User: Advanced // @Increment: 32 AP_GROUPINFO("BAT_CNT", 1, AP_InertialSensor::BatchSampler, _required_count, 1024), // @Param: BAT_MASK // @DisplayName: Sensor Bitmask // @Description: Bitmap of which IMUs to log batch data for // @User: Advanced // @Values: 0:None,1:First IMU,255:All // @Bitmask: 0:IMU1,1:IMU2,2:IMU3 AP_GROUPINFO("BAT_MASK", 2, AP_InertialSensor::BatchSampler, _sensor_mask, DEFAULT_IMU_LOG_BAT_MASK), // @Param: BAT_OPT // @DisplayName: Batch Logging Options Mask // @Description: Options for the BatchSampler // @Bitmask: 0:Sensor-Rate Logging (sample at full sensor rate seen by AP) // @User: Advanced AP_GROUPINFO("BAT_OPT", 3, AP_InertialSensor::BatchSampler, _batch_options_mask, 0), // @Param: BAT_LGIN // @DisplayName: logging interval // @Description: Interval between pushing samples to the AP_Logger log // @Units: ms // @Increment: 10 AP_GROUPINFO("BAT_LGIN", 4, AP_InertialSensor::BatchSampler, push_interval_ms, 20), // @Param: BAT_LGCT // @DisplayName: logging count // @Description: Number of samples to push to count every @PREFIX@BAT_LGIN // @Increment: 1 AP_GROUPINFO("BAT_LGCT", 5, AP_InertialSensor::BatchSampler, samples_per_msg, 32), AP_GROUPEND }; extern const AP_HAL::HAL& hal; void AP_InertialSensor::BatchSampler::init() { if (_sensor_mask == 0) { return; } if (_required_count <= 0) { return; } _required_count -= _required_count % 32; // round down to nearest multiple of 32 const uint32_t total_allocation = 3*_required_count*sizeof(uint16_t); gcs().send_text(MAV_SEVERITY_DEBUG, "INS: alloc %u bytes for ISB (free=%u)", total_allocation, hal.util->available_memory()); data_x = (int16_t*)calloc(_required_count, sizeof(int16_t)); data_y = (int16_t*)calloc(_required_count, sizeof(int16_t)); data_z = (int16_t*)calloc(_required_count, sizeof(int16_t)); if (data_x == nullptr || data_y == nullptr || data_z == nullptr) { free(data_x); free(data_y); free(data_z); data_x = nullptr; data_y = nullptr; data_z = nullptr; gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for IMU batch sampling", total_allocation); return; } rotate_to_next_sensor(); initialised = true; } void AP_InertialSensor::BatchSampler::periodic() { if (_sensor_mask == 0) { return; } push_data_to_log(); } void AP_InertialSensor::BatchSampler::update_doing_sensor_rate_logging() { if (!((batch_opt_t)(_batch_options_mask.get()) & BATCH_OPT_SENSOR_RATE)) { _doing_sensor_rate_logging = false; return; } const uint8_t bit = (1< (uint8_t)_sensor_mask) { // should only ever happen if user resets _sensor_mask instance = 0; } if (type == IMU_SENSOR_TYPE_ACCEL) { // we have logged accelerometers, now log gyros: type = IMU_SENSOR_TYPE_GYRO; multiplier = _imu._gyro_raw_sampling_multiplier[instance]; update_doing_sensor_rate_logging(); return; } // log for accel sensor: type = IMU_SENSOR_TYPE_ACCEL; // move to next IMU backend: // we assume the number of gyros and accels is the same, taking // this minimum stops us doing bad things if that isn't true: const uint8_t _count = MIN(_imu._accel_count, _imu._gyro_count); // find next backend instance to log: bool haveinstance = false; for (uint8_t i=instance+1; i<_count; i++) { if (_sensor_mask & (1U<Log_Write_ISBH(isb_seqnum, type, instance, multiplier, _required_count, measurement_started_us, sample_rate)) { // buffer full? return; } isbh_sent = true; } // pack and send a data packet: if (!dataflash->Log_Write_ISBD(isb_seqnum, data_read_offset/samples_per_msg, &data_x[data_read_offset], &data_y[data_read_offset], &data_z[data_read_offset])) { // maybe later?! return; } data_read_offset += samples_per_msg; last_sent_ms = AP_HAL::millis(); if (data_read_offset >= _required_count) { // that was the last one. Clean up: data_read_offset = 0; isb_seqnum++; isbh_sent = false; // rotate to next instance: rotate_to_next_sensor(); data_write_offset = 0; // unlocks writing process } } bool AP_InertialSensor::BatchSampler::should_log(uint8_t _instance, IMU_SENSOR_TYPE _type) { if (_sensor_mask == 0) { return false; } if (!initialised) { return false; } if (_instance != instance) { return false; } if (_type != type) { return false; } if (data_write_offset >= _required_count) { return false; } AP_Logger *dataflash = AP_Logger::instance(); if (dataflash == nullptr) { return false; } #define MASK_LOG_ANY 0xFFFF if (!dataflash->should_log(MASK_LOG_ANY)) { return false; } return true; } void AP_InertialSensor::BatchSampler::sample(uint8_t _instance, AP_InertialSensor::IMU_SENSOR_TYPE _type, uint64_t sample_us, const Vector3f &_sample) { if (!should_log(_instance, _type)) { return; } if (data_write_offset == 0) { measurement_started_us = sample_us; } data_x[data_write_offset] = multiplier*_sample.x; data_y[data_write_offset] = multiplier*_sample.y; data_z[data_write_offset] = multiplier*_sample.z; data_write_offset++; // may unblock the reading process }