/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ /* Driver by Andrew Tridgell, Nov 2016 */ #include "AP_Compass_MMC3416.h" #include <AP_HAL/AP_HAL.h> #include <utility> #include <AP_Math/AP_Math.h> #include <stdio.h> #include <AP_Logger/AP_Logger.h> extern const AP_HAL::HAL &hal; #define REG_PRODUCT_ID 0x20 #define REG_XOUT_L 0x00 #define REG_STATUS 0x06 #define REG_CONTROL0 0x07 #define REG_CONTROL1 0x08 // bits in REG_CONTROL0 #define REG_CONTROL0_REFILL 0x80 #define REG_CONTROL0_RESET 0x40 #define REG_CONTROL0_SET 0x20 #define REG_CONTROL0_NB 0x10 #define REG_CONTROL0_TM 0x01 // datasheet says 50ms min for refill #define MIN_DELAY_SET_RESET 50 AP_Compass_Backend *AP_Compass_MMC3416::probe(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev, bool force_external, enum Rotation rotation) { if (!dev) { return nullptr; } AP_Compass_MMC3416 *sensor = new AP_Compass_MMC3416(std::move(dev), force_external, rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_MMC3416::AP_Compass_MMC3416(AP_HAL::OwnPtr<AP_HAL::Device> _dev, bool _force_external, enum Rotation _rotation) : dev(std::move(_dev)) , force_external(_force_external) , rotation(_rotation) { } bool AP_Compass_MMC3416::init() { dev->get_semaphore()->take_blocking(); dev->set_retries(10); uint8_t whoami; if (!dev->read_registers(REG_PRODUCT_ID, &whoami, 1) || whoami != 0x06) { // not a MMC3416 dev->get_semaphore()->give(); return false; } // reset sensor dev->write_register(REG_CONTROL1, 0x80); hal.scheduler->delay(10); dev->write_register(REG_CONTROL0, 0x00); // single shot dev->write_register(REG_CONTROL1, 0x00); // 16 bit, 7.92ms dev->get_semaphore()->give(); /* register the compass instance in the frontend */ dev->set_device_type(DEVTYPE_MMC3416); if (!register_compass(dev->get_bus_id(), compass_instance)) { return false; } set_dev_id(compass_instance, dev->get_bus_id()); printf("Found a MMC3416 on 0x%x as compass %u\n", dev->get_bus_id(), compass_instance); set_rotation(compass_instance, rotation); if (force_external) { set_external(compass_instance, true); } dev->set_retries(1); // call timer() at 100Hz dev->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_Compass_MMC3416::timer, void)); // wait 250ms for the compass to make it's initial readings hal.scheduler->delay(250); return true; } void AP_Compass_MMC3416::timer() { const uint16_t measure_count_limit = 50; const uint16_t zero_offset = 32768; // 16 bit mode const uint16_t sensitivity = 2048; // counts per Gauss, 16 bit mode const float counts_to_milliGauss = 1.0e3f / sensitivity; uint32_t now = AP_HAL::millis(); if (now - last_sample_ms > 500) { // seems to be stuck or on first sample, reset state machine state = STATE_REFILL1; last_sample_ms = now; } /* we use the SET/RESET method to remove bridge offset every measure_count_limit measurements. This involves a fairly complex state machine, but means we are much less sensitive to temperature changes */ switch (state) { case STATE_REFILL1: if (dev->write_register(REG_CONTROL0, REG_CONTROL0_REFILL)) { state = STATE_REFILL1_WAIT; refill_start_ms = AP_HAL::millis(); } break; case STATE_REFILL1_WAIT: { uint8_t status; if (AP_HAL::millis() - refill_start_ms > MIN_DELAY_SET_RESET && dev->read_registers(REG_STATUS, &status, 1) && (status & 0x02) == 0) { if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_SET) || !dev->write_register(REG_CONTROL0, REG_CONTROL0_TM)) { // Take Measurement state = STATE_REFILL1; } else { state = STATE_MEASURE_WAIT1; } } break; } case STATE_MEASURE_WAIT1: { uint8_t status; if (dev->read_registers(REG_STATUS, &status, 1) && (status & 1)) { if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data0[0], 6)) { state = STATE_REFILL1; break; } if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_REFILL)) { state = STATE_REFILL1; } else { state = STATE_REFILL2_WAIT; refill_start_ms = AP_HAL::millis(); } } break; } case STATE_REFILL2_WAIT: { uint8_t status; if (AP_HAL::millis() - refill_start_ms > MIN_DELAY_SET_RESET && dev->read_registers(REG_STATUS, &status, 1) && (status & 0x02) == 0) { if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_RESET) || !dev->write_register(REG_CONTROL0, REG_CONTROL0_TM)) { // Take Measurement state = STATE_REFILL1; } else { state = STATE_MEASURE_WAIT2; } } break; } case STATE_MEASURE_WAIT2: { uint8_t status; if (!dev->read_registers(REG_STATUS, &status, 1) || !(status & 1)) { break; } uint16_t data1[3]; if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data1[0], 6)) { state = STATE_REFILL1; break; } Vector3f field; /* calculate field and offset */ Vector3f f1(float(data0[0]) - zero_offset, float(data0[1]) - zero_offset, float(data0[2]) - zero_offset); Vector3f f2(float(data1[0]) - zero_offset, float(data1[1]) - zero_offset, float(data1[2]) - zero_offset); field = (f1 - f2) * (counts_to_milliGauss / 2); Vector3f new_offset = (f1 + f2) * (counts_to_milliGauss / 2); if (!have_initial_offset) { offset = new_offset; have_initial_offset = true; } else { // low pass changes to the offset offset = offset * 0.95f + new_offset * 0.05f; } #if 0 // @LoggerMessage: MMO // @Description: MMC3416 compass data // @Field: TimeUS: Time since system startup // @Field: Nx: new measurement X axis // @Field: Ny: new measurement Y axis // @Field: Nz: new measurement Z axis // @Field: Ox: new offset X axis // @Field: Oy: new offset Y axis // @Field: Oz: new offset Z axis AP::logger().Write("MMO", "TimeUS,Nx,Ny,Nz,Ox,Oy,Oz", "Qffffff", AP_HAL::micros64(), (double)new_offset.x, (double)new_offset.y, (double)new_offset.z, (double)offset.x, (double)offset.y, (double)offset.z); printf("F(%.1f %.1f %.1f) O(%.1f %.1f %.1f)\n", field.x, field.y, field.z, offset.x, offset.y, offset.z); #endif last_sample_ms = AP_HAL::millis(); accumulate_sample(field, compass_instance); if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TM)) { state = STATE_REFILL1; } else { state = STATE_MEASURE_WAIT3; } break; } case STATE_MEASURE_WAIT3: { uint8_t status; if (!dev->read_registers(REG_STATUS, &status, 1) || !(status & 1)) { break; } uint16_t data1[3]; if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data1[0], 6)) { state = STATE_REFILL1; break; } Vector3f field(float(data1[0]) - zero_offset, float(data1[1]) - zero_offset, float(data1[2]) - zero_offset); field *= -counts_to_milliGauss; field += offset; last_sample_ms = AP_HAL::millis(); accumulate_sample(field, compass_instance); // we stay in STATE_MEASURE_WAIT3 for measure_count_limit cycles if (measure_count++ >= measure_count_limit) { measure_count = 0; state = STATE_REFILL1; } else { if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TM)) { // Take Measurement state = STATE_REFILL1; } } break; } } } void AP_Compass_MMC3416::read() { drain_accumulated_samples(compass_instance); }