/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
Submarine simulator class
*/
#include "SIM_Submarine.h"
#include
#include
using namespace SITL;
static Thruster vectored_thrusters[] =
{ // Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor
Thruster(0, 0, 0, 1.0f, 0, -1.0f, 1.0f),
Thruster(1, 0, 0, -1.0f, 0, -1.0f, -1.0f),
Thruster(2, 0, 0, -1.0f, 0, 1.0f, 1.0f),
Thruster(3, 0, 0, 1.0f, 0, 1.0f, -1.0f),
Thruster(4, 1.0f, 0, 0, -1.0f, 0, 0),
Thruster(5, -1.0f, 0, 0, -1.0f, 0, 0)
};
static Thruster vectored_6dof_thrusters[] =
{
// Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor
Thruster(0, 0, 0, 1.0f, 0, -1.0f, 1.0f),
Thruster(1, 0, 0, -1.0f, 0, -1.0f, -1.0f),
Thruster(2, 0, 0, -1.0f, 0, 1.0f, 1.0f),
Thruster(3, 0, 0, 1.0f, 0, 1.0f, -1.0f),
Thruster(4, 1.0f, -1.0f, 0, -1.0f, 0, 0),
Thruster(5, -1.0f, -1.0f, 0, -1.0f, 0, 0),
Thruster(6, 1.0f, 1.0f, 0, -1.0f, 0, 0),
Thruster(7, -1.0f, 1.0f, 0, -1.0f, 0, 0)
};
Submarine::Submarine(const char *frame_str) :
Aircraft(frame_str),
frame(NULL)
{
frame_height = 0.0;
ground_behavior = GROUND_BEHAVIOR_NONE;
// default to vectored frame
thrusters = vectored_thrusters;
n_thrusters = 6;
if (strstr(frame_str, "vectored_6dof")) {
thrusters = vectored_6dof_thrusters;
n_thrusters = 8;
}
}
// calculate rotational and linear accelerations
void Submarine::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
{
rot_accel = Vector3f(0,0,0);
// slight positive buoyancy
body_accel = dcm.transposed() * Vector3f(0, 0, -calculate_buoyancy_acceleration());
for (int i = 0; i < n_thrusters; i++) {
Thruster t = thrusters[i];
int16_t pwm = input.servos[t.servo];
float output = 0;
// if valid pwm and not in the esc deadzone
// TODO: extract deadzone from parameters/vehicle code
if (pwm < 2000 && pwm > 1000 && (pwm < 1475 || pwm > 1525)) {
output = (pwm - 1500) / 400.0; // range -1~1
}
float thrust = output * fabs(output) * frame_property.thrust; // approximate pwm to thrust function using a quadratic curve
body_accel += t.linear * thrust / frame_property.weight;
rot_accel += t.rotational * thrust * frame_property.thruster_mount_radius / frame_property.moment_of_inertia;
}
float floor_depth = calculate_sea_floor_depth(position);
range = floor_depth - position.z;
// Limit movement at the sea floor
if (position.z > floor_depth && body_accel.z > -GRAVITY_MSS) {
body_accel.z = -GRAVITY_MSS;
}
// Calculate linear drag forces
Vector3f linear_drag_forces;
calculate_drag_force(velocity_air_bf, frame_property.linear_drag_coefficient, linear_drag_forces);
// Add forces in body frame accel
body_accel -= linear_drag_forces / frame_property.weight;
// Calculate angular drag forces
// TODO: This results in the wrong units. Fix the math.
Vector3f angular_drag_torque;
calculate_angular_drag_torque(gyro, frame_property.angular_drag_coefficient, angular_drag_torque);
// Calculate torque induced by buoyancy foams on the frame
Vector3f buoyancy_torque;
calculate_buoyancy_torque(buoyancy_torque);
// Add forces in body frame accel
rot_accel -= angular_drag_torque / frame_property.moment_of_inertia;
rot_accel += buoyancy_torque / frame_property.moment_of_inertia;
add_shove_forces(rot_accel, body_accel);
}
/**
* @brief Calculate the torque induced by buoyancy foam
*
* @param torque Output torques
*/
void Submarine::calculate_buoyancy_torque(Vector3f &torque)
{
// Let's assume 2 Liters water displacement at the top, and ~ 2kg of weight at the bottom.
const Vector3f force_up(0,0,-40); // 40 N upwards
const Vector3f force_position = dcm.transposed() * Vector3f(0, 0, 0.15); // offset in meters
torque = force_position % force_up;
}
/**
* @brief Calculate sea floor depth from submarine position
* This creates a non planar floor for rangefinder sensor test
* TODO: Create a better sea floor with procedural generatation
*
* @param position
* @return float
*/
float Submarine::calculate_sea_floor_depth(const Vector3f &/*position*/)
{
return 50;
}
/**
* @brief Calculate drag force against body
*
* @param velocity Body frame velocity of fluid
* @param drag_coefficient Drag coefficient of body
* @param force Output forces
* $ F_D = rho * v^2 * A * C_D / 2 $
* rho = water density (kg/m^3), V = velocity (m/s), A = area (m^2), C_D = drag_coefficient
*/
void Submarine::calculate_drag_force(const Vector3f &velocity, const Vector3f &drag_coefficient, Vector3f &force)
{
/**
* @brief It's necessary to keep the velocity orientation from the body frame.
* To do so, a mathematical artifice is used to do velocity square but without loosing the direction.
* $(|V|/V)*V^2$ = $|V|*V$
*/
const Vector3f velocity_2(
fabsf(velocity.x) * velocity.x,
fabsf(velocity.y) * velocity.y,
fabsf(velocity.z) * velocity.z
);
force = (velocity_2 * water_density) * frame_property.equivalent_sphere_area / 2.0f;
force *= drag_coefficient;
}
/**
* @brief Calculate angular drag torque using the equivalente sphere area and assuming a laminar external flow.
*
* $F_D = C_D*A*\rho*V^2/2$
* where:
* $F_D$ is the drag force
* $C_D$ is the drag coefficient
* $A$ is the surface area in contact with the fluid
* $/rho$ is the fluid density (1000kg/m³ for water)
* $V$ is the fluid velocity velocity relative to the surface
*
* @param angular_velocity Body frame velocity of fluid
* @param drag_coefficient Rotational drag coefficient of body
*/
void Submarine::calculate_angular_drag_torque(const Vector3f &angular_velocity, const Vector3f &drag_coefficient, Vector3f &torque)
{
/**
* @brief It's necessary to keep the velocity orientation from the body frame.
* To do so, a mathematical artifice is used to do velocity square but without loosing the direction.
* $(|V|/V)*V^2$ = $|V|*V$
*/
Vector3f v_2(
fabsf(angular_velocity.x) * angular_velocity.x,
fabsf(angular_velocity.y) * angular_velocity.y,
fabsf(angular_velocity.z) * angular_velocity.z
);
Vector3f f_d = v_2 *= drag_coefficient * frame_property.equivalent_sphere_area * 1000 / 2;
torque = f_d * frame_property.equivalent_sphere_radius;
}
/**
* @brief Calculate buoyancy force of the frame
*
* @return float
*/
float Submarine::calculate_buoyancy_acceleration()
{
float below_water_level = position.z - frame_property.height/2;
// Completely above water level
if (below_water_level < 0) {
return 0.0f;
}
// Completely below water level
if (below_water_level > frame_property.height/2) {
return frame_property.buoyancy_acceleration;
}
// bouyant force is proportional to fraction of height in water
return frame_property.buoyancy_acceleration * below_water_level/frame_property.height;
};
/*
update the Submarine simulation by one time step
*/
void Submarine::update(const struct sitl_input &input)
{
// get wind vector setup
update_wind(input);
Vector3f rot_accel;
calculate_forces(input, rot_accel, accel_body);
update_dynamics(rot_accel);
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
}
/*
return true if we are on the ground
*/
bool Submarine::on_ground() const
{
return false;
}