/// @file AC_PID_Basic.cpp /// @brief Generic PID algorithm #include #include #include "AC_PID_Basic.h" #define AC_PID_Basic_FILT_E_HZ_DEFAULT 20.0f // default input filter frequency #define AC_PID_Basic_FILT_E_HZ_MIN 0.01f // minimum input filter frequency #define AC_PID_Basic_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency #define AC_PID_Basic_FILT_D_HZ_MIN 0.005f // minimum input filter frequency const AP_Param::GroupInfo AC_PID_Basic::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_PID_Basic, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_PID_Basic, _ki, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 2, AC_PID_Basic, _kimax, 0), // @Param: FLTE // @DisplayName: PID Error filter frequency in Hz // @Description: Error filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTE", 3, AC_PID_Basic, _filt_E_hz, AC_PID_Basic_FILT_E_HZ_DEFAULT), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 4, AC_PID_Basic, _kd, 0), // @Param: FLTD // @DisplayName: D term filter frequency in Hz // @Description: D term filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTD", 5, AC_PID_Basic, _filt_D_hz, AC_PID_Basic_FILT_D_HZ_DEFAULT), // @Param: FF // @DisplayName: PID Feed Forward Gain // @Description: FF Gain which produces an output that is proportional to the magnitude of the target AP_GROUPINFO("FF", 6, AC_PID_Basic, _kff, 0), AP_GROUPEND }; // Constructor AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz, float dt) : _dt(dt) { // load parameter values from eeprom AP_Param::setup_object_defaults(this, var_info); _kp = initial_p; _ki = initial_i; _kd = initial_d; _kff = initial_ff; _kimax = fabsf(initial_imax); filt_E_hz(initial_filt_E_hz); filt_D_hz(initial_filt_D_hz); // reset input filter to first value received _reset_filter = true; } float AC_PID_Basic::update_all(float target, float measurement, bool limit) { return update_all(target, measurement, (limit && is_negative(_integrator)), (limit && is_positive(_integrator))); } // update_all - set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated based on the setting of the limit flag float AC_PID_Basic::update_all(float target, float measurement, bool limit_neg, bool limit_pos) { // don't process inf or NaN if (!isfinite(target) || isnan(target) || !isfinite(measurement) || isnan(measurement)) { INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); return 0.0f; } _target = target; // reset input filter to value received if (_reset_filter) { _reset_filter = false; _error = _target - measurement; _derivative = 0.0f; } else { float error_last = _error; _error += get_filt_E_alpha() * ((_target - measurement) - _error); // calculate and filter derivative if (is_positive(_dt)) { float derivative = (_error - error_last) / _dt; _derivative += get_filt_D_alpha() * (derivative - _derivative); } } // update I term update_i(limit_neg, limit_pos); const float P_out = _error * _kp; const float D_out = _derivative * _kd; _pid_info.target = _target; _pid_info.actual = measurement; _pid_info.error = _error; _pid_info.P = _error * _kp; _pid_info.I = _integrator; _pid_info.D = _derivative * _kd; _pid_info.FF = _target * _kff; return P_out + _integrator + D_out + _target * _kff; } // update_i - update the integral // if limit_neg is true, the integral can only increase // if limit_pos is true, the integral can only decrease void AC_PID_Basic::update_i(bool limit_neg, bool limit_pos) { if (!is_zero(_ki)) { // Ensure that integrator can only be reduced if the output is saturated if (!((limit_neg && is_negative(_error)) || (limit_pos && is_positive(_error)))) { _integrator += ((float)_error * _ki) * _dt; _integrator = constrain_float(_integrator, -_kimax, _kimax); } } else { _integrator = 0.0f; } } void AC_PID_Basic::reset_I() { _integrator = 0.0; _pid_info.I = 0.0; } // save_gains - save gains to eeprom void AC_PID_Basic::save_gains() { _kp.save(); _ki.save(); _kd.save(); _kff.save(); _kimax.save(); _filt_E_hz.save(); _filt_D_hz.save(); } // get_filt_T_alpha - get the target filter alpha float AC_PID_Basic::get_filt_E_alpha() const { return calc_lowpass_alpha_dt(_dt, _filt_E_hz); } // get_filt_D_alpha - get the derivative filter alpha float AC_PID_Basic::get_filt_D_alpha() const { return calc_lowpass_alpha_dt(_dt, _filt_D_hz); } void AC_PID_Basic::set_integrator(float target, float measurement, float i) { set_integrator(target - measurement, i); } void AC_PID_Basic::set_integrator(float error, float i) { set_integrator(i - error * _kp); } void AC_PID_Basic::set_integrator(float i) { _integrator = constrain_float(i, -_kimax, _kimax); _pid_info.I = _integrator; }