/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* support for autotune of multirotors. Based on original autotune code from ArduCopter, written by Leonard Hall Converted to a library by Andrew Tridgell */ #pragma once #include #include #include #include #define AUTOTUNE_AXIS_BITMASK_ROLL 1 #define AUTOTUNE_AXIS_BITMASK_PITCH 2 #define AUTOTUNE_AXIS_BITMASK_YAW 4 #define AUTOTUNE_SUCCESS_COUNT 4 // The number of successful iterations we need to freeze at current gains // Auto Tune message ids for ground station #define AUTOTUNE_MESSAGE_STARTED 0 #define AUTOTUNE_MESSAGE_STOPPED 1 #define AUTOTUNE_MESSAGE_SUCCESS 2 #define AUTOTUNE_MESSAGE_FAILED 3 #define AUTOTUNE_MESSAGE_SAVED_GAINS 4 #define AUTOTUNE_MESSAGE_TESTING 5 #define AUTOTUNE_ANNOUNCE_INTERVAL_MS 2000 #define AUTOTUNE_DWELL_CYCLES 10 class AC_AutoTune { public: // constructor AC_AutoTune(); // main run loop virtual void run(); // save gained, called on disarm virtual void save_tuning_gains(); // stop tune, reverting gains void stop(); // reset Autotune so that gains are not saved again and autotune can be run again. void reset() { mode = UNINITIALISED; axes_completed = 0; } // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; protected: // axis that can be tuned enum AxisType { ROLL = 0, // roll axis is being tuned (either angle or rate) PITCH = 1, // pitch axis is being tuned (either angle or rate) YAW = 2, // pitch axis is being tuned (either angle or rate) }; // // methods that must be supplied by the vehicle specific subclass // virtual bool init(void) = 0; // get pilot input for desired climb rate virtual float get_pilot_desired_climb_rate_cms(void) const = 0; // get pilot input for designed roll and pitch, and yaw rate virtual void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) = 0; // init pos controller Z velocity and accel limits virtual void init_z_limits() = 0; // log PIDs at full rate for during twitch virtual void log_pids() = 0; // return true if we have a good position estimate virtual bool position_ok(); // internal init function, should be called from init() bool init_internals(bool use_poshold, AC_AttitudeControl *attitude_control, AC_PosControl *pos_control, AP_AHRS_View *ahrs_view, AP_InertialNav *inertial_nav); // initialise position controller bool init_position_controller(); // main state machine to level vehicle, perform a test and update gains // directly updates attitude controller with targets void control_attitude(); // // methods to load and save gains // // backup original gains and prepare for start of tuning void backup_gains_and_initialise(); // switch to use original gains void load_orig_gains(); // switch to gains found by last successful autotune void load_tuned_gains(); // load gains used between tests. called during testing mode's update-gains step to set gains ahead of return-to-level step void load_intra_test_gains(); // load gains for next test. relies on axis variable being set virtual void load_test_gains(); // get intra test rate I gain for the specified axis virtual float get_intra_test_ri(AxisType test_axis) = 0; // get tuned rate I gain for the specified axis virtual float get_tuned_ri(AxisType test_axis) = 0; // get tuned yaw rate d gain virtual float get_tuned_yaw_rd() = 0; // test init and run methods that should be overridden for each vehicle virtual void test_init() = 0; virtual void test_run(AxisType test_axis, const float dir_sign) = 0; // return true if user has enabled autotune for roll, pitch or yaw axis bool roll_enabled() const; bool pitch_enabled() const; bool yaw_enabled() const; void twitching_test_rate(float rate, float rate_target, float &meas_rate_min, float &meas_rate_max); void twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min); void twitching_test_angle(float angle, float rate, float angle_target, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max); void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const; // twitch test functions for multicopter void twitch_test_init(); void twitch_test_run(AxisType test_axis, const float dir_sign); // update gains for the rate p up tune type virtual void updating_rate_p_up_all(AxisType test_axis)=0; // update gains for the rate p down tune type virtual void updating_rate_p_down_all(AxisType test_axis)=0; // update gains for the rate d up tune type virtual void updating_rate_d_up_all(AxisType test_axis)=0; // update gains for the rate d down tune type virtual void updating_rate_d_down_all(AxisType test_axis)=0; // update gains for the angle p up tune type virtual void updating_angle_p_up_all(AxisType test_axis)=0; // update gains for the angle p down tune type virtual void updating_angle_p_down_all(AxisType test_axis)=0; // returns true if rate P gain of zero is acceptable for this vehicle virtual bool allow_zero_rate_p() = 0; // get minimum rate P (for any axis) virtual float get_rp_min() const = 0; // get minimum angle P (for any axis) virtual float get_sp_min() const = 0; // get minimum rate Yaw filter value virtual float get_yaw_rate_filt_min() const = 0; // get attitude for slow position hold in autotune mode void get_poshold_attitude(float &roll_cd, float &pitch_cd, float &yaw_cd); virtual void Log_AutoTune() = 0; virtual void Log_AutoTuneDetails() = 0; // send message with high level status (e.g. Started, Stopped) void update_gcs(uint8_t message_id) const; // send lower level step status (e.g. Pilot overrides Active) void send_step_string(); // convert latest level issue to string for reporting const char *level_issue_string() const; // convert tune type to string for reporting const char *type_string() const; // send intermittant updates to user on status of tune virtual void do_gcs_announcements() = 0; enum struct LevelIssue { NONE, ANGLE_ROLL, ANGLE_PITCH, ANGLE_YAW, RATE_ROLL, RATE_PITCH, RATE_YAW, }; // check if current is greater than maximum and update level_problem structure bool check_level(const enum LevelIssue issue, const float current, const float maximum); // returns true if vehicle is close to level bool currently_level(); // autotune modes (high level states) enum TuneMode { UNINITIALISED = 0, // autotune has never been run TUNING = 1, // autotune is testing gains SUCCESS = 2, // tuning has completed, user is flight testing the new gains FAILED = 3, // tuning has failed, user is flying on original gains }; // steps performed while in the tuning mode enum StepType { WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch TESTING = 1, // autotune has begun a test and is watching the resulting vehicle movement UPDATE_GAINS = 2 // autotune has completed a test and is updating the gains based on the results }; // mini steps performed while in Tuning mode, Testing step enum TuneType { RD_UP = 0, // rate D is being tuned up RD_DOWN = 1, // rate D is being tuned down RP_UP = 2, // rate P is being tuned up RP_DOWN = 3, // rate P is being tuned down RFF_UP = 4, // rate FF is being tuned up RFF_DOWN = 5, // rate FF is being tuned down SP_UP = 6, // angle P is being tuned up SP_DOWN = 7, // angle P is being tuned down MAX_GAINS = 8, // max allowable stable gains are determined TUNE_COMPLETE = 9 // Reached end of tuning }; TuneType tune_seq[6]; // holds sequence of tune_types to be performed uint8_t tune_seq_curr; // current tune sequence step // type of gains to load enum GainType { GAIN_ORIGINAL = 0, GAIN_TEST = 1, GAIN_INTRA_TEST = 2, GAIN_TUNED = 3, }; void load_gains(enum GainType gain_type); TuneMode mode; // see TuneMode for what modes are allowed bool pilot_override; // true = pilot is overriding controls so we suspend tuning temporarily AxisType axis; // current axis being tuned. see AxisType enum bool positive_direction; // false = tuning in negative direction (i.e. left for roll), true = positive direction (i.e. right for roll) StepType step; // see StepType for what steps are performed TuneType tune_type; // see TuneType bool ignore_next; // true = ignore the next test bool twitch_first_iter; // true on first iteration of a twitch (used to signal we must step the attitude or rate target) bool use_poshold; // true = enable position hold bool have_position; // true = start_position is value Vector3f start_position; // target when holding position as an offset from EKF origin in cm in NEU frame uint8_t axes_completed; // bitmask of completed axes // variables uint32_t override_time; // the last time the pilot overrode the controls float test_rate_min; // the minimum angular rate achieved during TESTING_RATE step float test_rate_max; // the maximum angular rate achieved during TESTING_RATE step float test_angle_min; // the minimum angle achieved during TESTING_ANGLE step float test_angle_max; // the maximum angle achieved during TESTING_ANGLE step uint32_t step_start_time_ms; // start time of current tuning step (used for timeout checks) uint32_t level_start_time_ms; // start time of waiting for level uint32_t level_fail_warning_time_ms; // last time level failure warning message was sent to GCS uint32_t step_time_limit_ms; // time limit of current autotune process int8_t counter; // counter for tuning gains float target_rate, start_rate; // target and start rate float target_angle, start_angle; // target and start angles float desired_yaw_cd; // yaw heading during tune float rate_max, test_accel_max; // maximum acceleration variables float step_scaler; // scaler to reduce maximum target step float abort_angle; // Angle that test is aborted LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second // backup of currently being tuned parameter values float orig_roll_rp, orig_roll_ri, orig_roll_rd, orig_roll_rff, orig_roll_fltt, orig_roll_smax, orig_roll_sp, orig_roll_accel; float orig_pitch_rp, orig_pitch_ri, orig_pitch_rd, orig_pitch_rff, orig_pitch_fltt, orig_pitch_smax, orig_pitch_sp, orig_pitch_accel; float orig_yaw_rp, orig_yaw_ri, orig_yaw_rd, orig_yaw_rff, orig_yaw_fltt, orig_yaw_smax, orig_yaw_rLPF, orig_yaw_sp, orig_yaw_accel; bool orig_bf_feedforward; // currently being tuned parameter values float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel; float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel; float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel; float tune_roll_rff, tune_pitch_rff, tune_yaw_rd, tune_yaw_rff; uint32_t announce_time; float lean_angle; float rotation_rate; float roll_cd, pitch_cd; uint32_t last_pilot_override_warning; struct { LevelIssue issue{LevelIssue::NONE}; float maximum; float current; } level_problem; // parameters AP_Int8 axis_bitmask; AP_Float aggressiveness; AP_Float min_d; // copies of object pointers to make code a bit clearer AC_AttitudeControl *attitude_control; AC_PosControl *pos_control; AP_AHRS_View *ahrs_view; AP_InertialNav *inertial_nav; AP_Motors *motors; // Functions added for heli autotune // Add additional updating gain functions specific to heli // generic method used by subclasses to update gains for the rate ff up tune type virtual void updating_rate_ff_up_all(AxisType test_axis)=0; // generic method used by subclasses to update gains for the rate ff down tune type virtual void updating_rate_ff_down_all(AxisType test_axis)=0; // generic method used by subclasses to update gains for the max gain tune type virtual void updating_max_gains_all(AxisType test_axis)=0; // Feedforward test used to determine Rate FF gain void rate_ff_test_init(); void rate_ff_test_run(float max_angle_cds, float target_rate_cds); // dwell test used to perform frequency dwells for rate gains void dwell_test_init(float filt_freq); void dwell_test_run(uint8_t freq_resp_input, float dwell_freq, float &dwell_gain, float &dwell_phase); // dwell test used to perform frequency dwells for angle gains void angle_dwell_test_init(float filt_freq); void angle_dwell_test_run(float dwell_freq, float &dwell_gain, float &dwell_phase); // determines the gain and phase for a dwell void determine_gain(float tgt_rate, float meas_rate, float freq, float &gain, float &phase, bool &cycles_complete, bool funct_reset); uint8_t ff_test_phase; // phase of feedforward test float test_command_filt; // filtered commanded output float test_rate_filt; // filtered rate output float command_out; float test_tgt_rate_filt; // filtered target rate float filt_target_rate; bool ff_up_first_iter : 1; //true on first iteration of ff up testing float test_gain[20]; // gain of output to input float test_freq[20]; float test_phase[20]; float dwell_start_time_ms; uint8_t freq_cnt; uint8_t freq_cnt_max; float curr_test_freq; bool dwell_complete; Vector3f start_angles; LowPassFilterFloat command_filt; // filtered command LowPassFilterFloat target_rate_filt; // filtered target rotation rate in radians/second struct max_gain_data { float freq; float phase; float gain; float max_allowed; }; max_gain_data max_rate_p; max_gain_data max_rate_d; };