/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 #include "AP_InertialSensor_Oilpan.h" #include const extern AP_HAL::HAL& hal; // this driver assumes an AP_ADC object has been declared globally extern AP_ADC_ADS7844 apm1_adc; // ADC channel mappings on for the APM Oilpan // Sensors: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ const uint8_t AP_InertialSensor_Oilpan::_sensors[6] = { 1, 2, 0, 4, 5, 6 }; // ADC result sign adjustment for sensors. const int8_t AP_InertialSensor_Oilpan::_sensor_signs[6] = { 1, -1, -1, 1, -1, -1 }; // Maximum possible value returned by an offset-corrected sensor channel const float AP_InertialSensor_Oilpan::_adc_constraint = 900; // ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step // ADXL335 Sensitivity(from datasheet) => 330mV/g, // 0.8mV/ADC step => 330/0.8 = 412 // Tested value : 418 // Oilpan accelerometer scaling & offsets #define OILPAN_ACCEL_SCALE_1G (GRAVITY_MSS * 2.0f / (2465.0f - 1617.0f)) #define OILPAN_RAW_ACCEL_OFFSET ((2465.0f + 1617.0f) * 0.5f) #define OILPAN_RAW_GYRO_OFFSET 1658.0f // IDG500 Sensitivity (from datasheet) => 2.0mV/degree/s, // 0.8mV/ADC step => 0.8/3.33 = 0.4 // Tested values : 0.4026, ?, 0.4192 const float AP_InertialSensor_Oilpan::_gyro_gain_x = radians(0.4f); const float AP_InertialSensor_Oilpan::_gyro_gain_y = radians(0.41f); const float AP_InertialSensor_Oilpan::_gyro_gain_z = radians(0.41f); /* ------ Public functions -------------------------------------------*/ AP_InertialSensor_Oilpan::AP_InertialSensor_Oilpan(AP_InertialSensor &imu) : AP_InertialSensor_Backend(imu) { } /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_Oilpan::detect(AP_InertialSensor &_imu, AP_InertialSensor::Sample_rate sample_rate) { AP_InertialSensor_Oilpan *sensor = new AP_InertialSensor_Oilpan(_imu); if (sensor == NULL) { return NULL; } if (!sensor->_init_sensor(sample_rate)) { delete sensor; return NULL; } return sensor; } bool AP_InertialSensor_Oilpan::_init_sensor(AP_InertialSensor::Sample_rate sample_rate) { apm1_adc.Init(); switch (sample_rate) { case AP_InertialSensor::RATE_50HZ: _sample_threshold = 20; break; case AP_InertialSensor::RATE_100HZ: _sample_threshold = 10; break; case AP_InertialSensor::RATE_200HZ: _sample_threshold = 5; break; default: // can't do this speed return false; } _gyro_instance = _imu.register_gyro(); _accel_instance = _imu.register_accel(); return true; } /* copy data from ADC to frontend */ bool AP_InertialSensor_Oilpan::update() { float adc_values[6]; uint32_t now = hal.scheduler->micros(); apm1_adc.Ch6(_sensors, adc_values); // copy gyros to frontend Vector3f v; v(_sensor_signs[0] * ( adc_values[0] - OILPAN_RAW_GYRO_OFFSET ) * _gyro_gain_x, _sensor_signs[1] * ( adc_values[1] - OILPAN_RAW_GYRO_OFFSET ) * _gyro_gain_y, _sensor_signs[2] * ( adc_values[2] - OILPAN_RAW_GYRO_OFFSET ) * _gyro_gain_z); _rotate_and_offset_gyro(_gyro_instance, v, now); // copy accels to frontend v(_sensor_signs[3] * (adc_values[3] - OILPAN_RAW_ACCEL_OFFSET), _sensor_signs[4] * (adc_values[4] - OILPAN_RAW_ACCEL_OFFSET), _sensor_signs[5] * (adc_values[5] - OILPAN_RAW_ACCEL_OFFSET)); v *= OILPAN_ACCEL_SCALE_1G; _rotate_and_offset_accel(_accel_instance, v, now); return true; } // return true if a new sample is available bool AP_InertialSensor_Oilpan::_sample_available() const { return apm1_adc.num_samples_available(_sensors) >= _sample_threshold; } #endif // CONFIG_HAL_BOARD