#include #if HAL_ENABLE_LIBUAVCAN_DRIVERS #include "AP_BattMonitor.h" #include "AP_BattMonitor_UAVCAN.h" #include #include #include #include #include #include #include #include #include #include #define LOG_TAG "BattMon" extern const AP_HAL::HAL& hal; UC_REGISTRY_BINDER(BattInfoCb, uavcan::equipment::power::BatteryInfo); UC_REGISTRY_BINDER(BattInfoAuxCb, ardupilot::equipment::power::BatteryInfoAux); UC_REGISTRY_BINDER(MpptStreamCb, mppt::Stream); /// Constructor AP_BattMonitor_UAVCAN::AP_BattMonitor_UAVCAN(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, BattMonitor_UAVCAN_Type type, AP_BattMonitor_Params ¶ms) : AP_BattMonitor_Backend(mon, mon_state, params), _type(type) { // starts with not healthy _state.healthy = false; } void AP_BattMonitor_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan) { if (ap_uavcan == nullptr) { return; } auto* node = ap_uavcan->get_node(); uavcan::Subscriber *battinfo_listener; battinfo_listener = new uavcan::Subscriber(*node); // Backend Msg Handler const int battinfo_listener_res = battinfo_listener->start(BattInfoCb(ap_uavcan, &handle_battery_info_trampoline)); if (battinfo_listener_res < 0) { AP_BoardConfig::allocation_error("UAVCAN BatteryInfo subscriber start problem\n\r"); return; } uavcan::Subscriber *battinfo_aux_listener; battinfo_aux_listener = new uavcan::Subscriber(*node); // Backend Msg Handler const int battinfo_aux_listener_res = battinfo_aux_listener->start(BattInfoAuxCb(ap_uavcan, &handle_battery_info_aux_trampoline)); if (battinfo_aux_listener_res < 0) { AP_BoardConfig::allocation_error("UAVCAN BatteryInfoAux subscriber start problem"); return; } uavcan::Subscriber *mppt_stream_listener; mppt_stream_listener = new uavcan::Subscriber(*node); // Backend Msg Handler const int mppt_stream_listener_res = mppt_stream_listener->start(MpptStreamCb(ap_uavcan, &handle_mppt_stream_trampoline)); if (mppt_stream_listener_res < 0) { AP_BoardConfig::allocation_error("UAVCAN Mppt::Stream subscriber start problem"); return; } } AP_BattMonitor_UAVCAN* AP_BattMonitor_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t battery_id) { if (ap_uavcan == nullptr) { return nullptr; } for (uint8_t i = 0; i < AP::battery()._num_instances; i++) { if (AP::battery().drivers[i] == nullptr || AP::battery().get_type(i) != AP_BattMonitor::Type::UAVCAN_BatteryInfo) { continue; } AP_BattMonitor_UAVCAN* driver = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i]; if (driver->_ap_uavcan == ap_uavcan && driver->_node_id == node_id && match_battery_id(i, battery_id)) { return driver; } } // find empty uavcan driver for (uint8_t i = 0; i < AP::battery()._num_instances; i++) { if (AP::battery().drivers[i] != nullptr && AP::battery().get_type(i) == AP_BattMonitor::Type::UAVCAN_BatteryInfo && match_battery_id(i, battery_id)) { AP_BattMonitor_UAVCAN* batmon = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i]; if(batmon->_ap_uavcan != nullptr || batmon->_node_id != 0) { continue; } batmon->_ap_uavcan = ap_uavcan; batmon->_node_id = node_id; batmon->_instance = i; batmon->_node = ap_uavcan->get_node(); batmon->init(); AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "Registered BattMonitor Node %d on Bus %d\n", node_id, ap_uavcan->get_driver_index()); return batmon; } } return nullptr; } void AP_BattMonitor_UAVCAN::handle_battery_info(const BattInfoCb &cb) { update_interim_state(cb.msg->voltage, cb.msg->current, cb.msg->temperature, cb.msg->state_of_charge_pct); WITH_SEMAPHORE(_sem_battmon); _remaining_capacity_wh = cb.msg->remaining_capacity_wh; _full_charge_capacity_wh = cb.msg->full_charge_capacity_wh; } void AP_BattMonitor_UAVCAN::update_interim_state(const float voltage, const float current, const float temperature_K, const uint8_t soc) { WITH_SEMAPHORE(_sem_battmon); _interim_state.voltage = voltage; _interim_state.current_amps = current; _soc = soc; if (!isnanf(temperature_K) && temperature_K > 0) { // Temperature reported from battery in kelvin and stored internally in Celsius. _interim_state.temperature = temperature_K - C_TO_KELVIN; _interim_state.temperature_time = AP_HAL::millis(); } const uint32_t tnow = AP_HAL::micros(); if (!_has_battery_info_aux || _mppt.is_detected) { uint32_t dt = tnow - _interim_state.last_time_micros; // update total current drawn since startup if (_interim_state.last_time_micros != 0 && dt < 2000000) { // .0002778 is 1/3600 (conversion to hours) float mah = (float) ((double) _interim_state.current_amps * (double) dt * (double) 0.0000002778f); _interim_state.consumed_mah += mah; _interim_state.consumed_wh += 0.001f * mah * _interim_state.voltage; } } // record time _interim_state.last_time_micros = tnow; _interim_state.healthy = true; } void AP_BattMonitor_UAVCAN::handle_battery_info_aux(const BattInfoAuxCb &cb) { WITH_SEMAPHORE(_sem_battmon); uint8_t cell_count = MIN(ARRAY_SIZE(_interim_state.cell_voltages.cells), cb.msg->voltage_cell.size()); float remaining_capacity_ah = _remaining_capacity_wh / cb.msg->nominal_voltage; float full_charge_capacity_ah = _full_charge_capacity_wh / cb.msg->nominal_voltage; _cycle_count = cb.msg->cycle_count; for (uint8_t i = 0; i < cell_count; i++) { _interim_state.cell_voltages.cells[i] = cb.msg->voltage_cell[i] * 1000; } _interim_state.is_powering_off = cb.msg->is_powering_off; _interim_state.consumed_mah = (full_charge_capacity_ah - remaining_capacity_ah) * 1000; _interim_state.consumed_wh = _full_charge_capacity_wh - _remaining_capacity_wh; _interim_state.time_remaining = is_zero(_interim_state.current_amps) ? 0 : (remaining_capacity_ah / _interim_state.current_amps * 3600); _interim_state.has_time_remaining = true; _has_cell_voltages = true; _has_time_remaining = true; _has_consumed_energy = true; _has_battery_info_aux = true; } void AP_BattMonitor_UAVCAN::handle_mppt_stream(const MpptStreamCb &cb) { const bool use_input_value = (uint32_t(_params._options.get()) & uint32_t(AP_BattMonitor_Params::Options::MPPT_Use_Input_Value)) != 0; const float voltage = use_input_value ? cb.msg->input_voltage : cb.msg->output_voltage; const float current = use_input_value ? cb.msg->input_current : cb.msg->output_current; // use an invalid soc so we use the library calculated one const uint8_t soc = 127; // convert C to Kelvin const float temperature_K = isnanf(cb.msg->temperature) ? 0 : cb.msg->temperature + C_TO_KELVIN; update_interim_state(voltage, current, temperature_K, soc); if (!_mppt.is_detected) { // this is the first time the mppt message has been received // so set powered up state _mppt.is_detected = true; mppt_set_bootup_powered_state(); } mppt_check_and_report_faults(cb.msg->fault_flags); } void AP_BattMonitor_UAVCAN::handle_battery_info_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoCb &cb) { AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id); if (driver == nullptr) { return; } driver->handle_battery_info(cb); } void AP_BattMonitor_UAVCAN::handle_battery_info_aux_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoAuxCb &cb) { AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id); if (driver == nullptr) { return; } driver->handle_battery_info_aux(cb); } void AP_BattMonitor_UAVCAN::handle_mppt_stream_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MpptStreamCb &cb) { AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, node_id); if (driver == nullptr) { return; } driver->handle_mppt_stream(cb); } // read - read the voltage and current void AP_BattMonitor_UAVCAN::read() { uint32_t tnow = AP_HAL::micros(); // timeout after 5 seconds if ((tnow - _interim_state.last_time_micros) > AP_BATTMONITOR_UAVCAN_TIMEOUT_MICROS) { _interim_state.healthy = false; } // Copy over relevant states over to main state WITH_SEMAPHORE(_sem_battmon); _state.temperature = _interim_state.temperature; _state.temperature_time = _interim_state.temperature_time; _state.voltage = _interim_state.voltage; _state.current_amps = _interim_state.current_amps; _state.consumed_mah = _interim_state.consumed_mah; _state.consumed_wh = _interim_state.consumed_wh; _state.last_time_micros = _interim_state.last_time_micros; _state.healthy = _interim_state.healthy; _state.time_remaining = _interim_state.time_remaining; _state.has_time_remaining = _interim_state.has_time_remaining; _state.is_powering_off = _interim_state.is_powering_off; memcpy(_state.cell_voltages.cells, _interim_state.cell_voltages.cells, sizeof(_state.cell_voltages)); _has_temperature = (AP_HAL::millis() - _state.temperature_time) <= AP_BATT_MONITOR_TIMEOUT; // check if MPPT should be powered on/off depending upon arming state if (_mppt.is_detected) { mppt_set_armed_powered_state(); } } /// capacity_remaining_pct - returns true if the percentage is valid and writes to percentage argument bool AP_BattMonitor_UAVCAN::capacity_remaining_pct(uint8_t &percentage) const { if ((uint32_t(_params._options.get()) & uint32_t(AP_BattMonitor_Params::Options::Ignore_UAVCAN_SoC)) || _mppt.is_detected || _soc == 127) { // a UAVCAN battery monitor may not be able to supply a state of charge. If it can't then // the user can set the option to use current integration in the backend instead. // SOC of 127 is used as an invalid SOC flag ie system configuration errors or SOC estimation unavailable return AP_BattMonitor_Backend::capacity_remaining_pct(percentage); } // the monitor must have current readings in order to estimate consumed_mah and be healthy if (!has_current() || !_state.healthy) { return false; } percentage = _soc; return true; } /// get_cycle_count - return true if cycle count can be provided and fills in cycles argument bool AP_BattMonitor_UAVCAN::get_cycle_count(uint16_t &cycles) const { if (_has_battery_info_aux) { cycles = _cycle_count; return true; } return false; } // request MPPT board to power on/off at boot as specified by BATT_OPTIONS void AP_BattMonitor_UAVCAN::mppt_set_bootup_powered_state() { const uint32_t options = uint32_t(_params._options.get()); const bool on_at_boot = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_On_At_Boot)) != 0; const bool off_at_boot = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_Off_At_Boot)) != 0; if (on_at_boot) { mppt_set_powered_state(true, true); } else if (off_at_boot) { mppt_set_powered_state(false, true); } } // request MPPT board to power on/off depending upon vehicle arming state as specified by BATT_OPTIONS void AP_BattMonitor_UAVCAN::mppt_set_armed_powered_state() { // check if vehicle armed state has changed const bool vehicle_armed = hal.util->get_soft_armed(); if (vehicle_armed == _mppt.vehicle_armed_last) { return; } _mppt.vehicle_armed_last = vehicle_armed; // check options for arming state change events const uint32_t options = uint32_t(_params._options.get()); const bool power_on_at_arm = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_On_At_Arm)) != 0; const bool power_off_at_disarm = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_Off_At_Disarm)) != 0; if (vehicle_armed && power_on_at_arm) { mppt_set_powered_state(true, false); } else if (!vehicle_armed && power_off_at_disarm) { mppt_set_powered_state(false, false); } } // request MPPT board to power on or off // power_on should be true to power on the MPPT, false to power off // force should be true to force sending the state change request to the MPPT void AP_BattMonitor_UAVCAN::mppt_set_powered_state(bool power_on, bool force) { if (_ap_uavcan == nullptr || _node == nullptr || !_mppt.is_detected) { return; } // return immediately if already desired state and not forced if ((_mppt.powered_state == power_on) && !force) { return; } _mppt.powered_state = power_on; _mppt.powered_state_changed = true; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: powering %s", (unsigned)_instance+1, _mppt.powered_state ? "ON" : "OFF"); mppt::OutputEnable::Request request; request.enable = _mppt.powered_state; request.disable = !request.enable; uavcan::ServiceClient client(*_node); client.setCallback([](const uavcan::ServiceCallResult& handle_mppt_enable_output_response){}); client.call(_node_id, request); } // report changes in MPPT faults void AP_BattMonitor_UAVCAN::mppt_check_and_report_faults(uint8_t fault_flags) { // return immediately if no changes if (_mppt.fault_flags == fault_flags) { return; } _mppt.fault_flags = fault_flags; // handle recovery if (_mppt.fault_flags == 0) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: OK", (unsigned)_instance+1); return; } // send battery faults via text messages for (uint8_t fault_bit=0x01; fault_bit <= 0x08; fault_bit <<= 1) { // this loop is to generate multiple messages if there are multiple concurrent faults, but also run once if there are no faults if ((fault_bit & fault_flags) != 0) { const MPPT_FaultFlags err = (MPPT_FaultFlags)fault_bit; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: %s", (unsigned)_instance+1, mppt_fault_string(err)); } } } // returns string description of MPPT fault bit. Only handles single bit faults const char* AP_BattMonitor_UAVCAN::mppt_fault_string(MPPT_FaultFlags fault) { switch (fault) { case MPPT_FaultFlags::OVER_VOLTAGE: return "over voltage"; case MPPT_FaultFlags::UNDER_VOLTAGE: return "under voltage"; case MPPT_FaultFlags::OVER_CURRENT: return "over current"; case MPPT_FaultFlags::OVER_TEMPERATURE: return "over temp"; } return "unknown"; } // return mavlink fault bitmask (see MAV_BATTERY_FAULT enum) uint32_t AP_BattMonitor_UAVCAN::get_mavlink_fault_bitmask() const { // return immediately if not mppt or no faults if (!_mppt.is_detected || (_mppt.fault_flags == 0)) { return 0; } // convert mppt fault bitmask to mavlink fault bitmask uint32_t mav_fault_bitmask = 0; if ((_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_VOLTAGE) || (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::UNDER_VOLTAGE)) { mav_fault_bitmask |= MAV_BATTERY_FAULT_INCOMPATIBLE_VOLTAGE; } if (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_CURRENT) { mav_fault_bitmask |= MAV_BATTERY_FAULT_OVER_CURRENT; } if (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_TEMPERATURE) { mav_fault_bitmask |= MAV_BATTERY_FAULT_OVER_TEMPERATURE; } return mav_fault_bitmask; } #endif