// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "AP_Mount_Alexmos.h" extern const AP_HAL::HAL& hal; void AP_Mount_Alexmos::init () { _port = hal.uartE; _port->begin(115200); _initialised = true; get_boardinfo(); read_params(0); //we request parameters for profile 0 and therfore get global and profile parameters } // update mount position - should be called periodically void AP_Mount_Alexmos::update() { if (!_initialised) { return; } read_incoming(); // read the incoming messages from the gimbal // update based on mount mode switch(_frontend.get_mode(_instance)) { // move mount to a "retracted" position. we do not implement a separate servo based retract mechanism case MAV_MOUNT_MODE_RETRACT: control_axis(_frontend.state[_instance]._retract_angles.get(), true); break; // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: control_axis(_frontend.state[_instance]._neutral_angles.get(), true); break; // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: // do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS break; // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: // update targets using pilot's rc inputs update_targets_from_rc(); control_axis(_angle_ef_target_rad, false); break; // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) { calc_angle_to_location(_frontend.state[_instance]._roi_target, _angle_ef_target_rad, true, false); control_axis(_angle_ef_target_rad, false); } break; default: // we do not know this mode so do nothing break; } } // has_pan_control - returns true if this mount can control it's pan (required for multicopters) bool AP_Mount_Alexmos::has_pan_control() const { return _gimbal_3axis; } // set_mode - sets mount's mode void AP_Mount_Alexmos::set_mode(enum MAV_MOUNT_MODE mode) { // record the mode change and return success _frontend.state[_instance]._mode = mode; } // status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message void AP_Mount_Alexmos::status_msg(mavlink_channel_t chan) { get_angles(); mavlink_msg_mount_status_send(chan, 0, 0, _current_angle.x*100, _current_angle.y*100, _current_angle.z*100); } /* * get_angles */ void AP_Mount_Alexmos::get_angles() { uint8_t data[1] = {(uint8_t)1}; send_command (CMD_GET_ANGLES, data , 1); } /* * set_motor will activate motors if true , and disable them if false. */ void AP_Mount_Alexmos::set_motor(bool on){ if (on) { uint8_t data[1] = {(uint8_t)1}; send_command (CMD_MOTORS_ON, data, 1); } else { uint8_t data[1] = {(uint8_t)1}; send_command (CMD_MOTORS_OFF, data, 1); } } /* * get board version and firmware version */ void AP_Mount_Alexmos::get_boardinfo() { if (_board_version != 0) { return; } uint8_t data[1] = {(uint8_t)1}; send_command (CMD_BOARD_INFO, data , 1); } /* control_axis : send new angles to the gimbal at a fixed speed of 30 deg/s2 */ void AP_Mount_Alexmos::control_axis(const Vector3f& angle, bool target_in_degrees ) { // convert to degrees if necessary Vector3f target_deg = angle; if (!target_in_degrees) { target_deg *= RAD_TO_DEG; } uint8_t mode = AP_MOUNT_ALEXMOS_MODE_ANGLE; int16_t speed_roll = DEGREE_PER_SEC_TO_VALUE(AP_MOUNT_ALEXMOS_SPEED); int16_t angle_roll = DEGREE_TO_VALUE(target_deg.x); int16_t speed_pitch = DEGREE_PER_SEC_TO_VALUE(AP_MOUNT_ALEXMOS_SPEED); int16_t angle_pitch = DEGREE_TO_VALUE(target_deg.y); int16_t speed_yaw = DEGREE_PER_SEC_TO_VALUE(AP_MOUNT_ALEXMOS_SPEED); int16_t angle_yaw = DEGREE_TO_VALUE(target_deg.z); uint8_t data[13] = { (uint8_t)mode, (uint8_t)speed_roll, (uint8_t)(speed_roll >> 8), (uint8_t)angle_roll, (uint8_t)(angle_roll >> 8 ), (uint8_t)speed_pitch, (uint8_t)(speed_pitch >> 8), (uint8_t)angle_pitch, (uint8_t)(angle_pitch >> 8), (uint8_t)speed_yaw, (uint8_t)(speed_yaw >> 8), (uint8_t)angle_yaw, (uint8_t)(angle_yaw >> 8) }; send_command (CMD_CONTROL, data , 13); } /* read current profile profile_id and global parameters from the gimbal settings */ void AP_Mount_Alexmos::read_params(uint8_t profile_id){ uint8_t data[1] = {(uint8_t) profile_id}; send_command (CMD_READ_PARAMS, data , 1); } /* write new parameters to the gimbal settings */ void AP_Mount_Alexmos::write_params() { if (!_param_read_once) { return; } send_command (CMD_WRITE_PARAMS, _current_parameters.bytes , sizeof (alexmos_params)); } /* send a command to the Alemox Serial API */ void AP_Mount_Alexmos::send_command(uint8_t cmd, uint8_t* data, uint8_t size) { if (_port->txspace() < (size + 5)) { return; } uint8_t checksum = 0; _port->write( '>' ); _port->write( cmd ); // write command id _port->write( size ); // write body size _port->write( cmd+size ); // write header checkum for (uint8_t i = 0; i != size ; i++) { checksum += data[i]; _port->write ( data[i] ); } _port->write (checksum); } /* * Parse the body of the message received from the Alexmos gimbal */ void AP_Mount_Alexmos::parse_body() { switch (_command_id ) { case CMD_BOARD_INFO: _board_version = _buffer.version._board_version/ 10; _current_firmware_version = _buffer.version._firmware_version / 1000.0f ; _firmware_beta_version = _buffer.version._firmware_version % 10 ; _gimbal_3axis = ( _buffer.version._board_features & 0x1 ); _gimbal_bat_monitoring = (_buffer.version._board_features & 0x2 ); break; case CMD_GET_ANGLES: _current_angle.x = VALUE_TO_DEGREE(_buffer.angles.angle_roll); _current_angle.y = VALUE_TO_DEGREE(_buffer.angles.angle_pitch); _current_angle.z = VALUE_TO_DEGREE(_buffer.angles.angle_yaw); break; case CMD_READ_PARAMS: _param_read_once = true; _current_parameters.params = _buffer.params; break; case CMD_WRITE_PARAMS: break; default : _last_command_confirmed = true; break; } } /* * detect and read the header of the incoming message from the gimbal */ void AP_Mount_Alexmos::read_incoming() { uint8_t data; while (_port->available()) { data = _port->read(); switch (_step) { case 0: if ( '>' == data) { _step = 1; _checksum = 0; //reset checksum accumulator _last_command_confirmed = false; } break; case 1: // command ID _checksum = data; _command_id = data; _step++; break; case 2: // Size of the body of the message _checksum += data; _payload_length = data; _step++; break; case 3: // checksum of the header if (_checksum != data ) { _step = 0; _checksum = 0; // checksum error break; } _step++; _checksum = 0; _payload_counter = 0; // prepare to receive payload break; case 4: // parsing body _checksum += data; if (_payload_counter < sizeof(_buffer)) { _buffer.bytes[_payload_counter] = data; } if (++_payload_counter == _payload_length) _step++; break; case 5:// body checksum _step = 0; if (_checksum != data) { break; } parse_body (); } } }