#include <AP_Winch/AP_Winch_Daiwa.h> #include <AP_Logger/AP_Logger.h> #include <GCS_MAVLink/GCS.h> extern const AP_HAL::HAL& hal; // true if winch is healthy bool AP_Winch_Daiwa::healthy() const { // healthy if we have received data within 3 seconds return (AP_HAL::millis() - data_update_ms < 3000); } void AP_Winch_Daiwa::init() { // call superclass init AP_Winch_Backend::init(); // initialise serial connection to winch const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Winch, 0); if (uart != nullptr) { // always use baudrate of 115200 uart->begin(115200); } } void AP_Winch_Daiwa::update() { // return immediately if no servo is assigned to control the winch if (!SRV_Channels::function_assigned(SRV_Channel::k_winch)) { return; } // read latest data from winch read_data_from_winch(); // read pilot input read_pilot_desired_rate(); // send outputs to winch control_winch(); } //send generator status void AP_Winch_Daiwa::send_status(const GCS_MAVLINK &channel) { // prepare status bitmask uint32_t status_bitmask = 0; if (healthy()) { status_bitmask |= MAV_WINCH_STATUS_HEALTHY; } if (latest.thread_end) { status_bitmask |= MAV_WINCH_STATUS_FULLY_RETRACTED; } if (latest.moving > 0) { status_bitmask |= MAV_WINCH_STATUS_MOVING; } if (latest.clutch > 0) { status_bitmask |= MAV_WINCH_STATUS_CLUTCH_ENGAGED; } // convert speed percentage to absolute speed const float speed_ms = fabsf(config.rate_max) * (float)latest.speed_pct * 0.01f; // send status mavlink_msg_winch_status_send( channel.get_chan(), AP_HAL::micros64(), latest.line_length, speed_ms, (float)latest.tension_corrected * 0.01f, latest.voltage, latest.current, latest.motor_temp, status_bitmask); } // write log void AP_Winch_Daiwa::write_log() { AP::logger().Write_Winch( healthy(), latest.thread_end, latest.moving, latest.clutch, (uint8_t)config.control_mode, config.length_desired, get_current_length(), config.rate_desired, latest.tension_corrected, latest.voltage, constrain_int16(latest.motor_temp, INT8_MIN, INT8_MAX)); } // read incoming data from winch and update intermediate and latest structures void AP_Winch_Daiwa::read_data_from_winch() { // return immediately if serial port is not configured if (uart == nullptr) { return; } // read any available characters from serial port and send to GCS int16_t nbytes = uart->available(); while (nbytes-- > 0) { int16_t b = uart->read(); if ((b >= '0' && b <= '9') || (b >= 'A' && b <= 'F') || (b >= 'a' && b <= 'f')) { // add digits to buffer buff[buff_len] = b; buff_len++; if (buff_len >= ARRAY_SIZE(buff)) { buff_len = 0; parse_state = ParseState::WAITING_FOR_TIME; } } else if (b == ',' || b == '\r') { // comma or carriage return signals end of current value // parse number received and empty buffer buff[buff_len] = '\0'; long int value = (int32_t)strtol(buff, nullptr, 16); buff_len = 0; switch (parse_state) { case ParseState::WAITING_FOR_TIME: intermediate.time_ms = (uint32_t)value; parse_state = ParseState::WAITING_FOR_SPOOL; break; case ParseState::WAITING_FOR_SPOOL: intermediate.line_length = (int32_t)value * line_length_correction_factor; parse_state = ParseState::WAITING_FOR_TENSION1; break; case ParseState::WAITING_FOR_TENSION1: intermediate.tension_uncorrected = (uint16_t)value; parse_state = ParseState::WAITING_FOR_TENSION2; break; case ParseState::WAITING_FOR_TENSION2: intermediate.tension_corrected = (uint16_t)value; parse_state = ParseState::WAITING_FOR_THREAD_END; break; case ParseState::WAITING_FOR_THREAD_END: intermediate.thread_end = (value > 0); parse_state = ParseState::WAITING_FOR_MOVING; break; case ParseState::WAITING_FOR_MOVING: intermediate.moving = constrain_int32(value, 0, UINT8_MAX); parse_state = ParseState::WAITING_FOR_CLUTCH; break; case ParseState::WAITING_FOR_CLUTCH: intermediate.clutch = constrain_int32(value, 0, UINT8_MAX); parse_state = ParseState::WAITING_FOR_SPEED; break; case ParseState::WAITING_FOR_SPEED: intermediate.speed_pct = constrain_int32(value, 0, UINT8_MAX); parse_state = ParseState::WAITING_FOR_VOLTAGE; break; case ParseState::WAITING_FOR_VOLTAGE: intermediate.voltage = (float)value * 0.1f; parse_state = ParseState::WAITING_FOR_CURRENT; break; case ParseState::WAITING_FOR_CURRENT: intermediate.current = (float)value * 0.1f; parse_state = ParseState::WAITING_FOR_PCB_TEMP; break; case ParseState::WAITING_FOR_PCB_TEMP: intermediate.pcb_temp = (float)value * 0.1f; parse_state = ParseState::WAITING_FOR_MOTOR_TEMP; break; case ParseState::WAITING_FOR_MOTOR_TEMP: intermediate.motor_temp = (float)value * 0.1f; // successfully parsed a complete message latest = intermediate; data_update_ms = AP_HAL::millis(); parse_state = ParseState::WAITING_FOR_TIME; break; } } else { // line feed or unexpected characters buff_len = 0; parse_state = ParseState::WAITING_FOR_TIME; } } } // update pwm outputs to control winch void AP_Winch_Daiwa::control_winch() { const uint32_t now_ms = AP_HAL::millis(); float dt = (now_ms - control_update_ms) * 0.001f; if (dt > 1.0f) { dt = 0.0f; } control_update_ms = now_ms; // if real doing any control output trim value if (config.control_mode == AP_Winch::ControlMode::RELAXED) { // if not doing any control output release clutch and move winch to trim SRV_Channels::set_output_limit(SRV_Channel::k_winch_clutch, SRV_Channel::Limit::MAX); SRV_Channels::set_output_scaled(SRV_Channel::k_winch, 0); // rate used for acceleration limiting reset to zero set_previous_rate(0.0f); return; } // release clutch SRV_Channels::set_output_limit(SRV_Channel::k_winch_clutch, SRV_Channel::Limit::MIN); // if doing position control, calculate position error to desired rate if ((config.control_mode == AP_Winch::ControlMode::POSITION) && healthy()) { float position_error = config.length_desired - latest.line_length; config.rate_desired = constrain_float(position_error * config.pos_p, -config.rate_max, config.rate_max); } // apply acceleration limited to rate const float rate_limited = get_rate_limited_by_accel(config.rate_desired, dt); // use linear interpolation to calculate output to move winch at desired rate float scaled_output = 0; if (!is_zero(rate_limited)) { scaled_output = linear_interpolate(output_dz, 1000, fabsf(rate_limited), 0, config.rate_max) * (is_positive(rate_limited) ? 1.0f : -1.0f); } SRV_Channels::set_output_scaled(SRV_Channel::k_winch, scaled_output); }