/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "SRV_Channel/SRV_Channel.h" #include "AP_MotorsUGV.h" #include "Rover.h" extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_MotorsUGV::var_info[] = { // @Param: PWM_TYPE // @DisplayName: Motor Output PWM type // @Description: This selects the output PWM type as regular PWM, OneShot, Brushed motor support using PWM (duty cycle) with separated direction signal, Brushed motor support with separate throttle and direction PWM (duty cyle) // @Values: 0:Normal,1:OneShot,2:OneShot125,3:BrushedWithRelay,4:BrushedBiPolar // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_TYPE", 1, AP_MotorsUGV, _pwm_type, PWM_TYPE_NORMAL), // @Param: PWM_FREQ // @DisplayName: Motor Output PWM freq for brushed motors // @Description: Motor Output PWM freq for brushed motors // @Units: kHz // @Range: 1 20 // @Increment: 1 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_FREQ", 2, AP_MotorsUGV, _pwm_freq, 16), // @Param: SAFE_DISARM // @DisplayName: Motor PWM output disabled when disarmed // @Description: Disables motor PWM output when disarmed // @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed // @User: Advanced AP_GROUPINFO("SAFE_DISARM", 3, AP_MotorsUGV, _disarm_disable_pwm, 0), // @Param: THR_SLEWRATE // @DisplayName: Throttle slew rate // @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second. A value of zero means no limit. A value of 100 means the throttle can change over its full range in one second. Note that for some NiMH powered rovers setting a lower value like 40 or 50 may be worthwhile as the sudden current demand on the battery of a big rise in throttle may cause a brownout. // @Units: %/s // @Range: 0 100 // @Increment: 1 // @User: Standard AP_GROUPINFO("SLEWRATE", 4, AP_MotorsUGV, _slew_rate, 100), // @Param: THR_MIN // @DisplayName: Throttle minimum // @Description: Throttle minimum percentage the autopilot will apply. This is mostly useful for rovers with internal combustion motors, to prevent the motor from cutting out in auto mode. // @Units: % // @Range: 0 20 // @Increment: 1 // @User: Standard AP_GROUPINFO("THR_MIN", 5, AP_MotorsUGV, _throttle_min, 0), // @Param: THR_MAX // @DisplayName: Throttle maximum // @Description: Throttle maximum percentage the autopilot will apply. This can be used to prevent overheating an ESC or motor on an electric rover // @Units: % // @Range: 30 100 // @Increment: 1 // @User: Standard AP_GROUPINFO("THR_MAX", 6, AP_MotorsUGV, _throttle_max, 100), // @Param: SKID_FRIC // @DisplayName: Motor skid steering friction compensation // @Description: Motor output for skid steering vehicles will be increased by this percentage to overcome friction when stopped // @Units: % // @Range: 0 100 // @Increment: 1 // @User: Standard AP_GROUPINFO("SKID_FRIC", 7, AP_MotorsUGV, _skid_friction, 0.0f), AP_GROUPEND }; AP_MotorsUGV::AP_MotorsUGV(AP_ServoRelayEvents &relayEvents) : _relayEvents(relayEvents) { AP_Param::setup_object_defaults(this, var_info); } void AP_MotorsUGV::init() { // setup servo ouput setup_servo_output(); // setup pwm type setup_pwm_type(); // set safety output setup_safety_output(); } // setup output in case of main CPU failure void AP_MotorsUGV::setup_safety_output() { if (_pwm_type == PWM_TYPE_BRUSHED_WITH_RELAY) { // set trim to min to set duty cycle range (0 - 100%) to servo range SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttle); SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleLeft); SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleRight); } if (_disarm_disable_pwm) { // throttle channels output zero pwm (i.e. no signal) SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { // throttle channels output trim values (because rovers will go backwards if set to MIN) SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } // stop sending pwm if main CPU fails SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } // setup servo output ranges void AP_MotorsUGV::setup_servo_output() { // k_steering are limited to -45;45 degree SRV_Channels::set_angle(SRV_Channel::k_steering, SERVO_MAX); // k_throttle are in power percent so -100 ... 100 SRV_Channels::set_angle(SRV_Channel::k_throttle, 100); // skid steering left/right throttle as -1000 to 1000 values SRV_Channels::set_angle(SRV_Channel::k_throttleLeft, 1000); SRV_Channels::set_angle(SRV_Channel::k_throttleRight, 1000); } // set steering as a value from -4500 to +4500 void AP_MotorsUGV::set_steering(float steering) { _steering = constrain_float(steering, -4500.0f, 4500.0f); } // set throttle as a value from -100 to 100 void AP_MotorsUGV::set_throttle(float throttle) { // sanity check throttle min and max _throttle_min = constrain_int16(_throttle_min, 0, 20); _throttle_max = constrain_int16(_throttle_max, 30, 100); // check throttle is between -_throttle_max ~ +_throttle_max but outside -throttle_min ~ +throttle_min _throttle = constrain_float(throttle, -_throttle_max, _throttle_max); if ((_throttle_min > 0) && (fabsf(_throttle) < _throttle_min)) { if (is_negative(_throttle)) { _throttle = -_throttle_min; } else { _throttle = _throttle_min; } } } /* work out if skid steering is available */ bool AP_MotorsUGV::have_skid_steering() const { if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) && SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return true; } return false; } void AP_MotorsUGV::output(bool armed, float dt) { // soft-armed overrides passed in armed status if (!hal.util->get_soft_armed()) { armed = false; } slew_limit_throttle(dt); // clear and set limits based on input (limit flags may be set again by output_regular or output_skid_steering methods) set_limits_from_input(armed, _steering, _throttle); // output for regular steering/throttle style frames output_regular(armed, _steering, _throttle); // output for skid steering style frames output_skid_steering(armed, _steering, _throttle); // send values to the PWM timers for output SRV_Channels::calc_pwm(); hal.rcout->cork(); SRV_Channels::output_ch_all(); hal.rcout->push(); _last_throttle = _throttle; } // output to regular steering and throttle channels void AP_MotorsUGV::output_regular(bool armed, float steering, float throttle) { // always allow steering to move SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering); // output to throttle channels if (armed) { // handle armed case output_throttle(SRV_Channel::k_throttle, throttle); } else { // handle disarmed case if (_disarm_disable_pwm) { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } } } // output to skid steering channels void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float throttle) { if (!have_skid_steering()) { return; } // handle simpler disarmed case if (!armed) { if (_disarm_disable_pwm) { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } return; } // skid steering mixer float steering_scaled = steering / 4500.0f; // steering scaled -1 to +1 float throttle_scaled = throttle / 100.0f; // throttle scaled -1 to +1 // apply constraints steering_scaled = constrain_float(steering_scaled, -1.0f, 1.0f); throttle_scaled = constrain_float(throttle_scaled, -1.0f, 1.0f); // check for saturation and scale back throttle and steering proportionally const float saturation_value = fabsf(steering_scaled) + fabsf(throttle_scaled); if (saturation_value > 1.0f) { steering_scaled = steering_scaled / saturation_value; throttle_scaled = throttle_scaled / saturation_value; // set limits if (is_negative(steering)) { limit.steer_left = true; } else { limit.steer_right = true; } if (is_negative(throttle)) { limit.throttle_lower = true; } else { limit.throttle_upper = true; } } // add in throttle float motor_left = throttle_scaled; float motor_right = throttle_scaled; // deal with case of turning on the spot if (is_zero(throttle_scaled)) { // steering output split evenly between left and right motors and compensated for friction const float friction_comp = MAX(0.0f, 1.0f + (_skid_friction * 0.01f)); motor_left += steering_scaled * 0.5f * friction_comp; motor_right -= steering_scaled * 0.5f * friction_comp; } else { // add in steering const float dir = is_positive(throttle_scaled) ? 1.0f : -1.0f; if (is_negative(steering_scaled)) { // moving left all steering to right wheel motor_right -= dir * steering_scaled; } else { // turning right, all steering to left wheel motor_left += dir * steering_scaled; } } // send pwm value to each motor output_throttle(SRV_Channel::k_throttleLeft, 100.0f * motor_left); output_throttle(SRV_Channel::k_throttleRight, 100.0f * motor_right); } // output throttle value to main throttle channel, left throttle or right throttle. throttle should be scaled from -100 to 100 void AP_MotorsUGV::output_throttle(SRV_Channel::Aux_servo_function_t function, float throttle) { // sanity check servo function if (function != SRV_Channel::k_throttle && function != SRV_Channel::k_throttleLeft && function != SRV_Channel::k_throttleRight) { return; } // constrain output throttle = constrain_float(throttle, -100.0f, 100.0f); // set relay if necessary if (_pwm_type == PWM_TYPE_BRUSHED_WITH_RELAY) { // find the output channel, if not found return const SRV_Channel *out_chan = SRV_Channels::get_channel_for(function); if (out_chan == nullptr) { return; } const int8_t reverse_multiplier = out_chan->get_reversed() ? -1 : 1; bool relay_high = is_negative(reverse_multiplier * throttle); switch (function) { case SRV_Channel::k_throttle: case SRV_Channel::k_throttleLeft: _relayEvents.do_set_relay(0, relay_high); break; case SRV_Channel::k_throttleRight: _relayEvents.do_set_relay(1, relay_high); break; default: // do nothing break; } // invert the output to always have positive value calculated by calc_pwm throttle = reverse_multiplier * fabsf(throttle); } // output to servo channel switch (function) { case SRV_Channel::k_throttle: SRV_Channels::set_output_scaled(function, throttle); break; case SRV_Channel::k_throttleLeft: case SRV_Channel::k_throttleRight: SRV_Channels::set_output_scaled(function, throttle * 10.0f); break; default: // do nothing break; } } // slew limit throttle for one iteration void AP_MotorsUGV::slew_limit_throttle(float dt) { if (_use_slew_rate && (_slew_rate > 0)) { float temp = _slew_rate * dt * 0.01f * (_throttle_max - _throttle_min); if (temp < 1.0f) { temp = 1.0f; } _throttle = constrain_int16(_throttle, _last_throttle - temp, _last_throttle + temp); } } // set limits based on steering and throttle input void AP_MotorsUGV::set_limits_from_input(bool armed, float steering, float throttle) { // set limits based on inputs limit.steer_left = !armed || (steering <= -4500.0f); limit.steer_right = !armed || (steering >= 4500.0f); limit.throttle_lower = !armed || (throttle <= -_throttle_max); limit.throttle_upper = !armed || (throttle >= _throttle_max); } // setup pwm output type void AP_MotorsUGV::setup_pwm_type() { switch (_pwm_type) { case PWM_TYPE_ONESHOT: case PWM_TYPE_ONESHOT125: // tell HAL to do immediate output hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_ONESHOT); break; case PWM_TYPE_BRUSHED_WITH_RELAY: case PWM_TYPE_BRUSHED_BIPOLAR: hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_BRUSHED); /* * Group 0: channels 0 1 * Group 1: channels 4 5 6 7 * Group 2: channels 2 3 */ // TODO : See if we can seperate frequency between groups hal.rcout->set_freq((1UL << 0), static_cast(_pwm_freq * 1000)); // Steering group hal.rcout->set_freq((1UL << 2), static_cast(_pwm_freq * 1000)); // Throttle group break; default: // do nothing break; } } // test steering or throttle output as a percentage of the total (range -100 to +100) // used in response to DO_MOTOR_TEST mavlink command bool AP_MotorsUGV::output_test_pct(motor_test_order motor_seq, float pct) { // check if the motor_seq is valid if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) { return false; } pct = constrain_float(pct, -100.0f, 100.0f); switch (motor_seq) { case MOTOR_TEST_THROTTLE: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) { return false; } output_throttle(SRV_Channel::k_throttle, pct); break; } case MOTOR_TEST_STEERING: { if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { return false; } SRV_Channels::set_output_scaled(SRV_Channel::k_steering, pct * 45.0f); break; } case MOTOR_TEST_THROTTLE_LEFT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) { return false; } output_throttle(SRV_Channel::k_throttleLeft, pct); break; } case MOTOR_TEST_THROTTLE_RIGHT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return false; } output_throttle(SRV_Channel::k_throttleRight, pct); break; } default: return false; } SRV_Channels::calc_pwm(); hal.rcout->cork(); SRV_Channels::output_ch_all(); hal.rcout->push(); return true; } // test steering or throttle output using a pwm value bool AP_MotorsUGV::output_test_pwm(motor_test_order motor_seq, float pwm) { // check if the motor_seq is valid if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) { return false; } switch (motor_seq) { case MOTOR_TEST_THROTTLE: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, pwm); break; } case MOTOR_TEST_STEERING: { if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_steering, pwm); break; } case MOTOR_TEST_THROTTLE_LEFT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm); break; } case MOTOR_TEST_THROTTLE_RIGHT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm); break; } default: return false; } SRV_Channels::calc_pwm(); hal.rcout->cork(); SRV_Channels::output_ch_all(); hal.rcout->push(); return true; }