/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#define ARM_DELAY               20  // called at 10hz so 2 seconds
#define DISARM_DELAY            20  // called at 10hz so 2 seconds
#define AUTO_TRIM_DELAY         100 // called at 10hz so 10 seconds
#define AUTO_DISARMING_DELAY    25  // called at 1hz so 25 seconds

// arm_motors_check - checks for pilot input to arm or disarm the copter
// called at 10hz
static void arm_motors_check()
{
    static int16_t arming_counter;
    bool allow_arming = false;

    // ensure throttle is down
    if (g.rc_3.control_in > 0) {
        arming_counter = 0;
        return;
    }

    // allow arming/disarming in fully manual flight modes ACRO, STABILIZE, SPORT and TOY
    if (manual_flight_mode(control_mode)) {
        allow_arming = true;
    }

    // allow arming/disarming in Loiter and AltHold if landed
    if (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD)) {
        allow_arming = true;
    }

    // kick out other flight modes
    if (!allow_arming) {
        arming_counter = 0;
        return;
    }
	
	#if FRAME_CONFIG == HELI_FRAME
	if ((motors.rsc_mode > 0) && (g.rc_8.control_in >= 10)){
		arming_counter = 0;
		return;
	}
	#endif  // HELI_FRAME

#if TOY_EDF == ENABLED
    int16_t tmp = g.rc_1.control_in;
#else
    int16_t tmp = g.rc_4.control_in;
#endif

    // full right
    if (tmp > 4000) {

        // increase the arming counter to a maximum of 1 beyond the auto trim counter
        if( arming_counter <= AUTO_TRIM_DELAY ) {
            arming_counter++;
        }

        // arm the motors and configure for flight
        if (arming_counter == ARM_DELAY && !motors.armed()) {
            // run pre-arm-checks and display failures
            pre_arm_checks(true);
            if(ap.pre_arm_check && arm_checks(true)) {
                init_arm_motors();
            }else{
                // reset arming counter if pre-arm checks fail
                arming_counter = 0;
            }
        }

        // arm the motors and configure for flight
        if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) {
            auto_trim_counter = 250;
        }

    // full left
    }else if (tmp < -4000) {

        // increase the counter to a maximum of 1 beyond the disarm delay
        if( arming_counter <= DISARM_DELAY ) {
            arming_counter++;
        }

        // disarm the motors
        if (arming_counter == DISARM_DELAY && motors.armed()) {
            init_disarm_motors();
        }

    // Yaw is centered so reset arming counter
    }else{
        arming_counter = 0;
    }
}

// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 25 seconds
// called at 1hz
static void auto_disarm_check()
{
    static uint8_t auto_disarming_counter;

    if(manual_flight_mode(control_mode) && (g.rc_3.control_in == 0) && motors.armed()) {
        auto_disarming_counter++;

        if(auto_disarming_counter == AUTO_DISARMING_DELAY) {
            init_disarm_motors();
        }else if (auto_disarming_counter > AUTO_DISARMING_DELAY) {
            auto_disarming_counter = AUTO_DISARMING_DELAY + 1;
        }
    }else{
        auto_disarming_counter = 0;
    }
}

// init_arm_motors - performs arming process including initialisation of barometer and gyros
static void init_arm_motors()
{
	// arming marker
    // Flag used to track if we have armed the motors the first time.
    // This is used to decide if we should run the ground_start routine
    // which calibrates the IMU
    static bool did_ground_start = false;

    // disable cpu failsafe because initialising everything takes a while
    failsafe_disable();

#if LOGGING_ENABLED == ENABLED
    // start dataflash
    start_logging();
#endif

#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
    gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS"));
#endif

    // we don't want writes to the serial port to cause us to pause
    // mid-flight, so set the serial ports non-blocking once we arm
    // the motors
    hal.uartA->set_blocking_writes(false);
    if (gcs3.initialised) {
        hal.uartC->set_blocking_writes(false);
    }

#if COPTER_LEDS == ENABLED
    piezo_beep_twice();
#endif

    // Remember Orientation
    // --------------------
    init_simple_bearing();

    initial_armed_bearing = ahrs.yaw_sensor;

    // Reset home position
    // -------------------
    if(ap.home_is_set)
        init_home();

    // all I terms are invalid
    // -----------------------
    reset_I_all();

    if(did_ground_start == false) {
        did_ground_start = true;
        startup_ground();
    }

#if HIL_MODE != HIL_MODE_ATTITUDE
    // read Baro pressure at ground -
    // this resets Baro for more accuracy
    //-----------------------------------
    init_barometer();
#endif

    // go back to normal AHRS gains
    ahrs.set_fast_gains(false);

    // enable gps velocity based centrefugal force compensation
    ahrs.set_correct_centrifugal(true);

    // set hover throttle
    motors.set_mid_throttle(g.throttle_mid);

#if COPTER_LEDS == ENABLED
    piezo_beep_twice();
#endif

    // Cancel arming if throttle is raised too high so that copter does not suddenly take off
    read_radio();
    if (g.rc_3.control_in > g.throttle_cruise && g.throttle_cruise > 100) {
        motors.output_min();
        failsafe_enable();
        return;
    }

#if SPRAYER == ENABLED
    // turn off sprayer's test if on
    sprayer.test_pump(false);
#endif

    // enable output to motors
    output_min();

    // finally actually arm the motors
    motors.armed(true);

    // log arming to dataflash
    Log_Write_Event(DATA_ARMED);

    // reenable failsafe
    failsafe_enable();
}

// perform pre-arm checks and set ap.pre_arm_check flag
static void pre_arm_checks(bool display_failure)
{
    // exit immediately if we've already successfully performed the pre-arm check
    if( ap.pre_arm_check ) {
        return;
    }

    // succeed if pre arm checks are disabled
    if(!g.arming_check_enabled) {
        set_pre_arm_check(true);
        return;
    }

    // pre-arm rc checks a prerequisite
    pre_arm_rc_checks();
    if(!ap.pre_arm_rc_check) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated"));
        }
        return;
    }
    
    // pre-arm check to ensure ch7 and ch8 have different functions
    if ((g.ch7_option != 0 || g.ch8_option != 0) && g.ch7_option == g.ch8_option) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Ch7&Ch8 Opt cannot be same"));
        }
        return;
    }

    // check accelerometers have been calibrated
    if(!ins.calibrated()) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated"));
        }
        return;
    }

    // check the compass is healthy
    if(!compass.healthy) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy"));
        }
        return;
    }

    // check compass learning is on or offsets have been set
    Vector3f offsets = compass.get_offsets();
    if(!compass._learn && offsets.length() == 0) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated"));
        }
        return;
    }

    // check for unreasonable compass offsets
    if(offsets.length() > 500) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high"));
        }
        return;
    }

    // check for unreasonable mag field length
    float mag_field = pythagorous3(compass.mag_x, compass.mag_y, compass.mag_z);
    if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field"));
        }
        return;
    }

    // barometer health check
    if(!barometer.healthy) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Baro not healthy"));
        }
        return;
    }

#if AC_FENCE == ENABLED
    // check fence is initialised
    if(!fence.pre_arm_check() || (((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) && g_gps->hdop > g.gps_hdop_good)) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad GPS Pos"));
        }
        return;
    }
#endif

#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1
    // check board voltage
    if(board_voltage() < BOARD_VOLTAGE_MIN || board_voltage() > BOARD_VOLTAGE_MAX) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage"));
        }
        return;
    }
#endif

    // failsafe parameter checks
    if (g.failsafe_throttle) {
        // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
        if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) {
            if (display_failure) {
                gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE"));
            }
            return;
        }
    }

    // lean angle parameter check
    if (g.angle_max < 1000 || g.angle_max > 8000) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX"));
        }
        return;
    }

    // check gps is ok if required - note this same check is repeated again in arm_checks
    if(mode_requires_GPS(control_mode) && (!GPS_ok() || g_gps->hdop > g.gps_hdop_good)) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad GPS Pos"));
        }
        return;
    }

    // if we've gotten this far then pre arm checks have completed
    set_pre_arm_check(true);
}

// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag
static void pre_arm_rc_checks()
{
    // exit immediately if we've already successfully performed the pre-arm rc check
    if( ap.pre_arm_rc_check ) {
        return;
    }

    // check if radio has been calibrated
    if(!g.rc_3.radio_min.load()) {
        return;
    }

    // check channels 1 & 2 have min <= 1300 and max >= 1700
    if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) {
        return;
    }

    // check channels 3 & 4 have min <= 1300 and max >= 1700
    if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) {
        return;
    }

    // if we've gotten this far rc is ok
    ap.pre_arm_rc_check = true;
}

// arm_checks - perform final checks before arming
// always called just before arming.  Return true if ok to arm
static bool arm_checks(bool display_failure)
{
    // succeed if arming checks are disabled
    if(!g.arming_check_enabled) {
        return true;
    }

    // check gps is ok if required - note this same check is also done in pre-arm checks
    if(mode_requires_GPS(control_mode) && (!GPS_ok() || g_gps->hdop > g.gps_hdop_good)) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Bad GPS Pos"));
        }
        return false;
    }

    // check if safety switch has been pushed
    if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
        if (display_failure) {
            gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch"));
        }
        return false;
    }

    // if we've gotten this far all is ok
    return true;
}

static void init_disarm_motors()
{
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
    gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS"));
#endif

    motors.armed(false);

    compass.save_offsets();

    g.throttle_cruise.save();

#if AUTOTUNE == ENABLED
    // save auto tuned parameters
    auto_tune_save_tuning_gains();
#endif

    // we are not in the air
    set_takeoff_complete(false);

#if COPTER_LEDS == ENABLED
    piezo_beep();
#endif

    // setup fast AHRS gains to get right attitude
    ahrs.set_fast_gains(true);

    // log disarm to the dataflash
    Log_Write_Event(DATA_DISARMED);

    // disable gps velocity based centrefugal force compensation
    ahrs.set_correct_centrifugal(false);
}

/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void
set_servos_4()
{
#if FRAME_CONFIG == TRI_FRAME
    // To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors
    g.rc_3.servo_out = min(g.rc_3.servo_out, 800);
#endif
    motors.output();
}