/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include <AP_HAL/AP_HAL.h> #include "AC_PosControl.h" #include <AP_Math/AP_Math.h> extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_PosControl::var_info[] = { // 0 was used for HOVER // @Param: _ACC_XY_FILT // @DisplayName: XY Acceleration filter cutoff frequency // @Description: Lower values will slow the response of the navigation controller and reduce twitchiness // @Units: Hz // @Range: 0.5 5 // @Increment: 0.1 // @User: Advanced AP_GROUPINFO("_ACC_XY_FILT", 1, AC_PosControl, _accel_xy_filt_hz, POSCONTROL_ACCEL_FILTER_HZ), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AP_Motors& motors, AC_AttitudeControl& attitude_control, AC_P& p_pos_z, AC_P& p_vel_z, AC_PID& pid_accel_z, AC_P& p_pos_xy, AC_PI_2D& pi_vel_xy) : _ahrs(ahrs), _inav(inav), _motors(motors), _attitude_control(attitude_control), _p_pos_z(p_pos_z), _p_vel_z(p_vel_z), _pid_accel_z(pid_accel_z), _p_pos_xy(p_pos_xy), _pi_vel_xy(pi_vel_xy), _dt(POSCONTROL_DT_400HZ), _dt_xy(POSCONTROL_DT_50HZ), _last_update_xy_ms(0), _last_update_z_ms(0), _speed_down_cms(POSCONTROL_SPEED_DOWN), _speed_up_cms(POSCONTROL_SPEED_UP), _speed_cms(POSCONTROL_SPEED), _accel_z_cms(POSCONTROL_ACCEL_Z), _accel_last_z_cms(0.0f), _accel_cms(POSCONTROL_ACCEL_XY), _jerk_cmsss(POSCONTROL_JERK_LIMIT_CMSSS), _leash(POSCONTROL_LEASH_LENGTH_MIN), _leash_down_z(POSCONTROL_LEASH_LENGTH_MIN), _leash_up_z(POSCONTROL_LEASH_LENGTH_MIN), _roll_target(0.0f), _pitch_target(0.0f), _alt_max(0.0f), _distance_to_target(0.0f), _accel_target_jerk_limited(0.0f,0.0f), _accel_target_filter(POSCONTROL_ACCEL_FILTER_HZ) { AP_Param::setup_object_defaults(this, var_info); // initialise flags _flags.recalc_leash_z = true; _flags.recalc_leash_xy = true; _flags.reset_desired_vel_to_pos = true; _flags.reset_rate_to_accel_xy = true; _flags.reset_accel_to_lean_xy = true; _flags.reset_rate_to_accel_z = true; _flags.reset_accel_to_throttle = true; _flags.freeze_ff_xy = true; _flags.freeze_ff_z = true; _flags.use_desvel_ff_z = true; _limit.pos_up = true; _limit.pos_down = true; _limit.vel_up = true; _limit.vel_down = true; _limit.accel_xy = true; } /// /// z-axis position controller /// /// set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025) void AC_PosControl::set_dt(float delta_sec) { _dt = delta_sec; // update rate controller's dt _pid_accel_z.set_dt(_dt); // update rate z-axis velocity error and accel error filters _vel_error_filter.set_cutoff_frequency(POSCONTROL_VEL_ERROR_CUTOFF_FREQ); } /// set_dt_xy - sets time delta in seconds for horizontal controller (i.e. 50hz = 0.02) void AC_PosControl::set_dt_xy(float dt_xy) { _dt_xy = dt_xy; _pi_vel_xy.set_dt(dt_xy); } /// set_speed_z - sets maximum climb and descent rates /// To-Do: call this in the main code as part of flight mode initialisation /// calc_leash_length_z should be called afterwards /// speed_down should be a negative number void AC_PosControl::set_speed_z(float speed_down, float speed_up) { // ensure speed_down is always negative speed_down = -fabsf(speed_down); if ((fabsf(_speed_down_cms-speed_down) > 1.0f) || (fabsf(_speed_up_cms-speed_up) > 1.0f)) { _speed_down_cms = speed_down; _speed_up_cms = speed_up; _flags.recalc_leash_z = true; calc_leash_length_z(); } } /// set_accel_z - set vertical acceleration in cm/s/s void AC_PosControl::set_accel_z(float accel_cmss) { if (fabsf(_accel_z_cms-accel_cmss) > 1.0f) { _accel_z_cms = accel_cmss; _flags.recalc_leash_z = true; calc_leash_length_z(); } } /// set_alt_target_with_slew - adjusts target towards a final altitude target /// should be called continuously (with dt set to be the expected time between calls) /// actual position target will be moved no faster than the speed_down and speed_up /// target will also be stopped if the motors hit their limits or leash length is exceeded void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt) { float alt_change = alt_cm-_pos_target.z; // do not use z-axis desired velocity feed forward _flags.use_desvel_ff_z = false; // adjust desired alt if motors have not hit their limits if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) { if (!is_zero(dt)) { float climb_rate_cms = constrain_float(alt_change/dt, _speed_down_cms, _speed_up_cms); _pos_target.z += climb_rate_cms*dt; _vel_desired.z = climb_rate_cms; // recorded for reporting purposes } } // do not let target get too far from current altitude float curr_alt = _inav.get_altitude(); _pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z); } /// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s /// should be called continuously (with dt set to be the expected time between calls) /// actual position target will be moved no faster than the speed_down and speed_up /// target will also be stopped if the motors hit their limits or leash length is exceeded void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt, bool force_descend) { // adjust desired alt if motors have not hit their limits // To-Do: add check of _limit.pos_down? if ((climb_rate_cms<0 && (!_motors.limit.throttle_lower || force_descend)) || (climb_rate_cms>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { _pos_target.z += climb_rate_cms * dt; } // do not let target alt get above limit if (_alt_max > 0 && _pos_target.z > _alt_max) { _pos_target.z = _alt_max; _limit.pos_up = true; } // do not use z-axis desired velocity feed forward // vel_desired set to desired climb rate for reporting and land-detector _flags.use_desvel_ff_z = false; _vel_desired.z = climb_rate_cms; } /// set_alt_target_from_climb_rate_ff - adjusts target up or down using a climb rate in cm/s using feed-forward /// should be called continuously (with dt set to be the expected time between calls) /// actual position target will be moved no faster than the speed_down and speed_up /// target will also be stopped if the motors hit their limits or leash length is exceeded /// set force_descend to true during landing to allow target to move low enough to slow the motors void AC_PosControl::set_alt_target_from_climb_rate_ff(float climb_rate_cms, float dt, bool force_descend) { // calculated increased maximum acceleration if over speed float accel_z_cms = _accel_z_cms; if (_vel_desired.z < _speed_down_cms && !is_zero(_speed_down_cms)) { accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_down_cms; } if (_vel_desired.z > _speed_up_cms && !is_zero(_speed_up_cms)) { accel_z_cms *= POSCONTROL_OVERSPEED_GAIN_Z * _vel_desired.z / _speed_up_cms; } accel_z_cms = constrain_float(accel_z_cms, 0.0f, 750.0f); // jerk_z is calculated to reach full acceleration in 1000ms. float jerk_z = accel_z_cms * POSCONTROL_JERK_RATIO; float accel_z_max = MIN(accel_z_cms, safe_sqrt(2.0f*fabsf(_vel_desired.z - climb_rate_cms)*jerk_z)); _accel_last_z_cms += jerk_z * dt; _accel_last_z_cms = MIN(accel_z_max, _accel_last_z_cms); float vel_change_limit = _accel_last_z_cms * dt; _vel_desired.z = constrain_float(climb_rate_cms, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit); _flags.use_desvel_ff_z = true; // adjust desired alt if motors have not hit their limits // To-Do: add check of _limit.pos_down? if ((_vel_desired.z<0 && (!_motors.limit.throttle_lower || force_descend)) || (_vel_desired.z>0 && !_motors.limit.throttle_upper && !_limit.pos_up)) { _pos_target.z += _vel_desired.z * dt; } // do not let target alt get above limit if (_alt_max > 0 && _pos_target.z > _alt_max) { _pos_target.z = _alt_max; _limit.pos_up = true; // decelerate feed forward to zero _vel_desired.z = constrain_float(0.0f, _vel_desired.z-vel_change_limit, _vel_desired.z+vel_change_limit); } } /// add_takeoff_climb_rate - adjusts alt target up or down using a climb rate in cm/s /// should be called continuously (with dt set to be the expected time between calls) /// almost no checks are performed on the input void AC_PosControl::add_takeoff_climb_rate(float climb_rate_cms, float dt) { _pos_target.z += climb_rate_cms * dt; } /// relax_alt_hold_controllers - set all desired and targets to measured void AC_PosControl::relax_alt_hold_controllers(float throttle_setting) { _pos_target.z = _inav.get_altitude(); _vel_desired.z = 0.0f; _flags.use_desvel_ff_z = false; _vel_target.z= _inav.get_velocity_z(); _vel_last.z = _inav.get_velocity_z(); _accel_feedforward.z = 0.0f; _accel_last_z_cms = 0.0f; _accel_target.z = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; _flags.reset_accel_to_throttle = true; _pid_accel_z.set_integrator(throttle_setting*1000.0f); } // get_alt_error - returns altitude error in cm float AC_PosControl::get_alt_error() const { return (_pos_target.z - _inav.get_altitude()); } /// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home void AC_PosControl::set_target_to_stopping_point_z() { // check if z leash needs to be recalculated calc_leash_length_z(); get_stopping_point_z(_pos_target); } /// get_stopping_point_z - calculates stopping point based on current position, velocity, vehicle acceleration void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const { const float curr_pos_z = _inav.get_altitude(); float curr_vel_z = _inav.get_velocity_z(); float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt float linear_velocity; // the velocity we swap between linear and sqrt // if position controller is active add current velocity error to avoid sudden jump in acceleration if (is_active_z()) { curr_vel_z += _vel_error.z; if (_flags.use_desvel_ff_z) { curr_vel_z -= _vel_desired.z; } } // calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function linear_velocity = _accel_z_cms/_p_pos_z.kP(); if (fabsf(curr_vel_z) < linear_velocity) { // if our current velocity is below the cross-over point we use a linear function stopping_point.z = curr_pos_z + curr_vel_z/_p_pos_z.kP(); } else { linear_distance = _accel_z_cms/(2.0f*_p_pos_z.kP()*_p_pos_z.kP()); if (curr_vel_z > 0){ stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms)); } else { stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z*curr_vel_z/(2.0f*_accel_z_cms)); } } stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_Z_MAX); } /// init_takeoff - initialises target altitude if we are taking off void AC_PosControl::init_takeoff() { const Vector3f& curr_pos = _inav.get_position(); _pos_target.z = curr_pos.z; // freeze feedforward to avoid jump freeze_ff_z(); // shift difference between last motor out and hover throttle into accelerometer I _pid_accel_z.set_integrator((_motors.get_throttle()-_motors.get_throttle_hover())*1000.0f); } // is_active_z - returns true if the z-axis position controller has been run very recently bool AC_PosControl::is_active_z() const { return ((AP_HAL::millis() - _last_update_z_ms) <= POSCONTROL_ACTIVE_TIMEOUT_MS); } /// update_z_controller - fly to altitude in cm above home void AC_PosControl::update_z_controller() { // check time since last cast uint32_t now = AP_HAL::millis(); if (now - _last_update_z_ms > POSCONTROL_ACTIVE_TIMEOUT_MS) { _flags.reset_rate_to_accel_z = true; _flags.reset_accel_to_throttle = true; } _last_update_z_ms = now; // check if leash lengths need to be recalculated calc_leash_length_z(); // call position controller pos_to_rate_z(); } /// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration /// called by pos_to_rate_z if z-axis speed or accelerations are changed void AC_PosControl::calc_leash_length_z() { if (_flags.recalc_leash_z) { _leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_pos_z.kP()); _leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_pos_z.kP()); _flags.recalc_leash_z = false; } } // pos_to_rate_z - position to rate controller for Z axis // calculates desired rate in earth-frame z axis and passes to rate controller // vel_up_max, vel_down_max should have already been set before calling this method void AC_PosControl::pos_to_rate_z() { float curr_alt = _inav.get_altitude(); // clear position limit flags _limit.pos_up = false; _limit.pos_down = false; // calculate altitude error _pos_error.z = _pos_target.z - curr_alt; // do not let target altitude get too far from current altitude if (_pos_error.z > _leash_up_z) { _pos_target.z = curr_alt + _leash_up_z; _pos_error.z = _leash_up_z; _limit.pos_up = true; } if (_pos_error.z < -_leash_down_z) { _pos_target.z = curr_alt - _leash_down_z; _pos_error.z = -_leash_down_z; _limit.pos_down = true; } // calculate _vel_target.z using from _pos_error.z using sqrt controller _vel_target.z = AC_AttitudeControl::sqrt_controller(_pos_error.z, _p_pos_z.kP(), _accel_z_cms); // check speed limits // To-Do: check these speed limits here or in the pos->rate controller _limit.vel_up = false; _limit.vel_down = false; if (_vel_target.z < _speed_down_cms) { _vel_target.z = _speed_down_cms; _limit.vel_down = true; } if (_vel_target.z > _speed_up_cms) { _vel_target.z = _speed_up_cms; _limit.vel_up = true; } // add feed forward component if (_flags.use_desvel_ff_z) { _vel_target.z += _vel_desired.z; } // call rate based throttle controller which will update accel based throttle controller targets rate_to_accel_z(); } // rate_to_accel_z - calculates desired accel required to achieve the velocity target // calculates desired acceleration and calls accel throttle controller void AC_PosControl::rate_to_accel_z() { const Vector3f& curr_vel = _inav.get_velocity(); float p; // used to capture pid values for logging // reset last velocity target to current target if (_flags.reset_rate_to_accel_z) { _vel_last.z = _vel_target.z; } // feed forward desired acceleration calculation if (_dt > 0.0f) { if (!_flags.freeze_ff_z) { _accel_feedforward.z = (_vel_target.z - _vel_last.z)/_dt; } else { // stop the feed forward being calculated during a known discontinuity _flags.freeze_ff_z = false; } } else { _accel_feedforward.z = 0.0f; } // store this iteration's velocities for the next iteration _vel_last.z = _vel_target.z; // reset velocity error and filter if this controller has just been engaged if (_flags.reset_rate_to_accel_z) { // Reset Filter _vel_error.z = 0; _vel_error_filter.reset(0); _flags.reset_rate_to_accel_z = false; } else { // calculate rate error and filter with cut off frequency of 2 Hz _vel_error.z = _vel_error_filter.apply(_vel_target.z - curr_vel.z, _dt); } // calculate p p = _p_vel_z.kP() * _vel_error.z; // consolidate and constrain target acceleration _accel_target.z = _accel_feedforward.z + p; // set target for accel based throttle controller accel_to_throttle(_accel_target.z); } // accel_to_throttle - alt hold's acceleration controller // calculates a desired throttle which is sent directly to the motors void AC_PosControl::accel_to_throttle(float accel_target_z) { float z_accel_meas; // actual acceleration float p,i,d; // used to capture pid values for logging // Calculate Earth Frame Z acceleration z_accel_meas = -(_ahrs.get_accel_ef_blended().z + GRAVITY_MSS) * 100.0f; // reset target altitude if this controller has just been engaged if (_flags.reset_accel_to_throttle) { // Reset Filter _accel_error.z = 0; _flags.reset_accel_to_throttle = false; } else { // calculate accel error _accel_error.z = accel_target_z - z_accel_meas; } // set input to PID _pid_accel_z.set_input_filter_d(_accel_error.z); _pid_accel_z.set_desired_rate(accel_target_z); // separately calculate p, i, d values for logging p = _pid_accel_z.get_p(); // get i term i = _pid_accel_z.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce // To-Do: should this be replaced with limits check from attitude_controller? if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) { i = _pid_accel_z.get_i(); } // get d term d = _pid_accel_z.get_d(); float thr_out = (p+i+d)/1000.0f +_motors.get_throttle_hover(); // send throttle to attitude controller with angle boost _attitude_control.set_throttle_out(thr_out, true, POSCONTROL_THROTTLE_CUTOFF_FREQ); } /// /// position controller /// /// set_accel_xy - set horizontal acceleration in cm/s/s /// calc_leash_length_xy should be called afterwards void AC_PosControl::set_accel_xy(float accel_cmss) { if (fabsf(_accel_cms-accel_cmss) > 1.0f) { _accel_cms = accel_cmss; _flags.recalc_leash_xy = true; calc_leash_length_xy(); } } /// set_speed_xy - set horizontal speed maximum in cm/s /// calc_leash_length_xy should be called afterwards void AC_PosControl::set_speed_xy(float speed_cms) { if (fabsf(_speed_cms-speed_cms) > 1.0f) { _speed_cms = speed_cms; _flags.recalc_leash_xy = true; calc_leash_length_xy(); } } /// set_pos_target in cm from home void AC_PosControl::set_pos_target(const Vector3f& position) { _pos_target = position; _flags.use_desvel_ff_z = false; _vel_desired.z = 0.0f; // initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run // To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle //_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); //_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); } /// set_xy_target in cm from home void AC_PosControl::set_xy_target(float x, float y) { _pos_target.x = x; _pos_target.y = y; } /// shift position target target in x, y axis void AC_PosControl::shift_pos_xy_target(float x_cm, float y_cm) { // move pos controller target _pos_target.x += x_cm; _pos_target.y += y_cm; // disable feed forward if (!is_zero(x_cm) || !is_zero(y_cm)) { freeze_ff_xy(); } } /// set_target_to_stopping_point_xy - sets horizontal target to reasonable stopping position in cm from home void AC_PosControl::set_target_to_stopping_point_xy() { // check if xy leash needs to be recalculated calc_leash_length_xy(); get_stopping_point_xy(_pos_target); } /// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration /// distance_max allows limiting distance to stopping point /// results placed in stopping_position vector /// set_accel_xy() should be called before this method to set vehicle acceleration /// set_leash_length() should have been called before this method void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const { const Vector3f curr_pos = _inav.get_position(); Vector3f curr_vel = _inav.get_velocity(); float linear_distance; // the distance at which we swap from a linear to sqrt response float linear_velocity; // the velocity above which we swap from a linear to sqrt response float stopping_dist; // the distance within the vehicle can stop float kP = _p_pos_xy.kP(); // add velocity error to current velocity if (is_active_xy()) { curr_vel.x += _vel_error.x; curr_vel.y += _vel_error.y; } // calculate current velocity float vel_total = norm(curr_vel.x, curr_vel.y); // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (kP <= 0.0f || _accel_cms <= 0.0f || is_zero(vel_total)) { stopping_point.x = curr_pos.x; stopping_point.y = curr_pos.y; return; } // calculate point at which velocity switches from linear to sqrt linear_velocity = _accel_cms/kP; // calculate distance within which we can stop if (vel_total < linear_velocity) { stopping_dist = vel_total/kP; } else { linear_distance = _accel_cms/(2.0f*kP*kP); stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms); } // constrain stopping distance stopping_dist = constrain_float(stopping_dist, 0, _leash); // convert the stopping distance into a stopping point using velocity vector stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total); stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total); } /// get_distance_to_target - get horizontal distance to loiter target in cm float AC_PosControl::get_distance_to_target() const { return _distance_to_target; } // is_active_xy - returns true if the xy position controller has been run very recently bool AC_PosControl::is_active_xy() const { return ((AP_HAL::millis() - _last_update_xy_ms) <= POSCONTROL_ACTIVE_TIMEOUT_MS); } /// init_xy_controller - initialise the xy controller /// sets target roll angle, pitch angle and I terms based on vehicle current lean angles /// should be called once whenever significant changes to the position target are made /// this does not update the xy target void AC_PosControl::init_xy_controller(bool reset_I) { // set roll, pitch lean angle targets to current attitude _roll_target = _ahrs.roll_sensor; _pitch_target = _ahrs.pitch_sensor; // initialise I terms from lean angles if (reset_I) { // reset last velocity if this controller has just been engaged or dt is zero lean_angles_to_accel(_accel_target.x, _accel_target.y); _pi_vel_xy.set_integrator(_accel_target); } // flag reset required in rate to accel step _flags.reset_desired_vel_to_pos = true; _flags.reset_rate_to_accel_xy = true; _flags.reset_accel_to_lean_xy = true; } /// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher void AC_PosControl::update_xy_controller(xy_mode mode, float ekfNavVelGainScaler, bool use_althold_lean_angle) { // compute dt uint32_t now = AP_HAL::millis(); float dt = (now - _last_update_xy_ms) / 1000.0f; _last_update_xy_ms = now; // sanity check dt - expect to be called faster than ~5hz if (dt > POSCONTROL_ACTIVE_TIMEOUT_MS*1.0e-3f) { dt = 0.0f; } // check if xy leash needs to be recalculated calc_leash_length_xy(); // translate any adjustments from pilot to loiter target desired_vel_to_pos(dt); // run position controller's position error to desired velocity step pos_to_rate_xy(mode, dt, ekfNavVelGainScaler); // run position controller's velocity to acceleration step rate_to_accel_xy(dt, ekfNavVelGainScaler); // run position controller's acceleration to lean angle step accel_to_lean_angles(dt, ekfNavVelGainScaler, use_althold_lean_angle); } float AC_PosControl::time_since_last_xy_update() const { uint32_t now = AP_HAL::millis(); return (now - _last_update_xy_ms)*0.001f; } /// init_vel_controller_xyz - initialise the velocity controller - should be called once before the caller attempts to use the controller void AC_PosControl::init_vel_controller_xyz() { // set roll, pitch lean angle targets to current attitude _roll_target = _ahrs.roll_sensor; _pitch_target = _ahrs.pitch_sensor; // reset last velocity if this controller has just been engaged or dt is zero lean_angles_to_accel(_accel_target.x, _accel_target.y); _pi_vel_xy.set_integrator(_accel_target); // flag reset required in rate to accel step _flags.reset_desired_vel_to_pos = true; _flags.reset_rate_to_accel_xy = true; _flags.reset_accel_to_lean_xy = true; // set target position const Vector3f& curr_pos = _inav.get_position(); set_xy_target(curr_pos.x, curr_pos.y); set_alt_target(curr_pos.z); // move current vehicle velocity into feed forward velocity const Vector3f& curr_vel = _inav.get_velocity(); set_desired_velocity(curr_vel); } /// update_velocity_controller_xyz - run the velocity controller - should be called at 100hz or higher /// velocity targets should we set using set_desired_velocity_xyz() method /// callers should use get_roll() and get_pitch() methods and sent to the attitude controller /// throttle targets will be sent directly to the motors void AC_PosControl::update_vel_controller_xyz(float ekfNavVelGainScaler) { // capture time since last iteration uint32_t now = AP_HAL::millis(); float dt = (now - _last_update_xy_ms)*0.001f; // call xy controller if (dt >= get_dt_xy()) { // sanity check dt if (dt >= 0.2f) { dt = 0.0f; } // check if xy leash needs to be recalculated calc_leash_length_xy(); // apply desired velocity request to position target desired_vel_to_pos(dt); // run position controller's position error to desired velocity step pos_to_rate_xy(XY_MODE_POS_LIMITED_AND_VEL_FF, dt, ekfNavVelGainScaler); // run velocity to acceleration step rate_to_accel_xy(dt, ekfNavVelGainScaler); // run acceleration to lean angle step accel_to_lean_angles(dt, ekfNavVelGainScaler, false); // update xy update time _last_update_xy_ms = now; } // update altitude target set_alt_target_from_climb_rate_ff(_vel_desired.z, _dt, false); // run z-axis position controller update_z_controller(); } float AC_PosControl::get_horizontal_error() const { return norm(_pos_error.x, _pos_error.y); } /// /// private methods /// /// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration /// should be called whenever the speed, acceleration or position kP is modified void AC_PosControl::calc_leash_length_xy() { if (_flags.recalc_leash_xy) { _leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP()); _flags.recalc_leash_xy = false; } } /// desired_vel_to_pos - move position target using desired velocities void AC_PosControl::desired_vel_to_pos(float nav_dt) { // range check nav_dt if( nav_dt < 0 ) { return; } // update target position if (_flags.reset_desired_vel_to_pos) { _flags.reset_desired_vel_to_pos = false; } else { _pos_target.x += _vel_desired.x * nav_dt; _pos_target.y += _vel_desired.y * nav_dt; } } /// pos_to_rate_xy - horizontal position error to velocity controller /// converts position (_pos_target) to target velocity (_vel_target) /// when use_desired_rate is set to true: /// desired velocity (_vel_desired) is combined into final target velocity and /// velocity due to position error is reduce to a maximum of 1m/s void AC_PosControl::pos_to_rate_xy(xy_mode mode, float dt, float ekfNavVelGainScaler) { Vector3f curr_pos = _inav.get_position(); float linear_distance; // the distance we swap between linear and sqrt velocity response float kP = ekfNavVelGainScaler * _p_pos_xy.kP(); // scale gains to compensate for noisy optical flow measurement in the EKF // avoid divide by zero if (kP <= 0.0f) { _vel_target.x = 0.0f; _vel_target.y = 0.0f; }else{ // calculate distance error _pos_error.x = _pos_target.x - curr_pos.x; _pos_error.y = _pos_target.y - curr_pos.y; // constrain target position to within reasonable distance of current location _distance_to_target = norm(_pos_error.x, _pos_error.y); if (_distance_to_target > _leash && _distance_to_target > 0.0f) { _pos_target.x = curr_pos.x + _leash * _pos_error.x/_distance_to_target; _pos_target.y = curr_pos.y + _leash * _pos_error.y/_distance_to_target; // re-calculate distance error _pos_error.x = _pos_target.x - curr_pos.x; _pos_error.y = _pos_target.y - curr_pos.y; _distance_to_target = _leash; } // calculate the distance at which we swap between linear and sqrt velocity response linear_distance = _accel_cms/(2.0f*kP*kP); if (_distance_to_target > 2.0f*linear_distance) { // velocity response grows with the square root of the distance float vel_sqrt = safe_sqrt(2.0f*_accel_cms*(_distance_to_target-linear_distance)); _vel_target.x = vel_sqrt * _pos_error.x/_distance_to_target; _vel_target.y = vel_sqrt * _pos_error.y/_distance_to_target; }else{ // velocity response grows linearly with the distance _vel_target.x = _p_pos_xy.kP() * _pos_error.x; _vel_target.y = _p_pos_xy.kP() * _pos_error.y; } if (mode == XY_MODE_POS_LIMITED_AND_VEL_FF) { // this mode is for loiter - rate-limiting the position correction // allows the pilot to always override the position correction in // the event of a disturbance // scale velocity within limit float vel_total = norm(_vel_target.x, _vel_target.y); if (vel_total > POSCONTROL_VEL_XY_MAX_FROM_POS_ERR) { _vel_target.x = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR * _vel_target.x/vel_total; _vel_target.y = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR * _vel_target.y/vel_total; } // add velocity feed-forward _vel_target.x += _vel_desired.x; _vel_target.y += _vel_desired.y; } else { if (mode == XY_MODE_POS_AND_VEL_FF) { // add velocity feed-forward _vel_target.x += _vel_desired.x; _vel_target.y += _vel_desired.y; } // scale velocity within speed limit float vel_total = norm(_vel_target.x, _vel_target.y); if (vel_total > _speed_cms) { _vel_target.x = _speed_cms * _vel_target.x/vel_total; _vel_target.y = _speed_cms * _vel_target.y/vel_total; } } } } /// rate_to_accel_xy - horizontal desired rate to desired acceleration /// converts desired velocities in lat/lon directions to accelerations in lat/lon frame void AC_PosControl::rate_to_accel_xy(float dt, float ekfNavVelGainScaler) { const Vector3f &vel_curr = _inav.get_velocity(); // current velocity in cm/s Vector2f vel_xy_p, vel_xy_i; // reset last velocity target to current target if (_flags.reset_rate_to_accel_xy) { _vel_last.x = _vel_target.x; _vel_last.y = _vel_target.y; _flags.reset_rate_to_accel_xy = false; } // feed forward desired acceleration calculation if (dt > 0.0f) { if (!_flags.freeze_ff_xy) { _accel_feedforward.x = (_vel_target.x - _vel_last.x)/dt; _accel_feedforward.y = (_vel_target.y - _vel_last.y)/dt; } else { // stop the feed forward being calculated during a known discontinuity _flags.freeze_ff_xy = false; } } else { _accel_feedforward.x = 0.0f; _accel_feedforward.y = 0.0f; } // store this iteration's velocities for the next iteration _vel_last.x = _vel_target.x; _vel_last.y = _vel_target.y; // calculate velocity error _vel_error.x = _vel_target.x - vel_curr.x; _vel_error.y = _vel_target.y - vel_curr.y; // call pi controller _pi_vel_xy.set_input(_vel_error); // get p vel_xy_p = _pi_vel_xy.get_p(); // update i term if we have not hit the accel or throttle limits OR the i term will reduce if ((!_limit.accel_xy && !_motors.limit.throttle_upper)) { vel_xy_i = _pi_vel_xy.get_i(); } else { vel_xy_i = _pi_vel_xy.get_i_shrink(); } // combine feed forward accel with PID output from velocity error and scale PID output to compensate for optical flow measurement induced EKF noise _accel_target.x = _accel_feedforward.x + (vel_xy_p.x + vel_xy_i.x) * ekfNavVelGainScaler; _accel_target.y = _accel_feedforward.y + (vel_xy_p.y + vel_xy_i.y) * ekfNavVelGainScaler; } /// accel_to_lean_angles - horizontal desired acceleration to lean angles /// converts desired accelerations provided in lat/lon frame to roll/pitch angles void AC_PosControl::accel_to_lean_angles(float dt, float ekfNavVelGainScaler, bool use_althold_lean_angle) { float accel_total; // total acceleration in cm/s/s float accel_right, accel_forward; float lean_angle_max = _attitude_control.lean_angle_max(); float accel_max = POSCONTROL_ACCEL_XY_MAX; // limit acceleration if necessary if (use_althold_lean_angle) { accel_max = MIN(accel_max, GRAVITY_MSS * 100.0f * tanf(ToRad(constrain_float(_attitude_control.get_althold_lean_angle_max(),1000,8000)/100.0f))); } // scale desired acceleration if it's beyond acceptable limit accel_total = norm(_accel_target.x, _accel_target.y); if (accel_total > accel_max && accel_total > 0.0f) { _accel_target.x = accel_max * _accel_target.x/accel_total; _accel_target.y = accel_max * _accel_target.y/accel_total; _limit.accel_xy = true; // unused } else { // reset accel limit flag _limit.accel_xy = false; } // reset accel to current desired acceleration if (_flags.reset_accel_to_lean_xy) { _accel_target_jerk_limited.x = _accel_target.x; _accel_target_jerk_limited.y = _accel_target.y; _accel_target_filter.reset(Vector2f(_accel_target.x, _accel_target.y)); _flags.reset_accel_to_lean_xy = false; } // apply jerk limit of 17 m/s^3 - equates to a worst case of about 100 deg/sec/sec float max_delta_accel = dt * _jerk_cmsss; Vector2f accel_in(_accel_target.x, _accel_target.y); Vector2f accel_change = accel_in-_accel_target_jerk_limited; float accel_change_length = accel_change.length(); if(accel_change_length > max_delta_accel) { accel_change *= max_delta_accel/accel_change_length; } _accel_target_jerk_limited += accel_change; // lowpass filter on NE accel _accel_target_filter.set_cutoff_frequency(MIN(_accel_xy_filt_hz, 5.0f*ekfNavVelGainScaler)); Vector2f accel_target_filtered = _accel_target_filter.apply(_accel_target_jerk_limited, dt); // rotate accelerations into body forward-right frame accel_forward = accel_target_filtered.x*_ahrs.cos_yaw() + accel_target_filtered.y*_ahrs.sin_yaw(); accel_right = -accel_target_filtered.x*_ahrs.sin_yaw() + accel_target_filtered.y*_ahrs.cos_yaw(); // update angle targets that will be passed to stabilize controller _pitch_target = constrain_float(atanf(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI),-lean_angle_max, lean_angle_max); float cos_pitch_target = cosf(_pitch_target*M_PI/18000); _roll_target = constrain_float(atanf(accel_right*cos_pitch_target/(GRAVITY_MSS * 100))*(18000/M_PI), -lean_angle_max, lean_angle_max); } // get_lean_angles_to_accel - convert roll, pitch lean angles to lat/lon frame accelerations in cm/s/s void AC_PosControl::lean_angles_to_accel(float& accel_x_cmss, float& accel_y_cmss) const { // rotate our roll, pitch angles into lat/lon frame accel_x_cmss = (GRAVITY_MSS * 100) * (-(_ahrs.cos_yaw() * _ahrs.sin_pitch() / MAX(_ahrs.cos_pitch(),0.5f)) - _ahrs.sin_yaw() * _ahrs.sin_roll() / MAX(_ahrs.cos_roll(),0.5f)); accel_y_cmss = (GRAVITY_MSS * 100) * (-(_ahrs.sin_yaw() * _ahrs.sin_pitch() / MAX(_ahrs.cos_pitch(),0.5f)) + _ahrs.cos_yaw() * _ahrs.sin_roll() / MAX(_ahrs.cos_roll(),0.5f)); } /// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const { float leash_length; // sanity check acceleration and avoid divide by zero if (accel_cms <= 0.0f) { accel_cms = POSCONTROL_ACCELERATION_MIN; } // avoid divide by zero if (kP <= 0.0f) { return POSCONTROL_LEASH_LENGTH_MIN; } // calculate leash length if(speed_cms <= accel_cms / kP) { // linear leash length based on speed close in leash_length = speed_cms / kP; }else{ // leash length grows at sqrt of speed further out leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms)); } // ensure leash is at least 1m long if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) { leash_length = POSCONTROL_LEASH_LENGTH_MIN; } return leash_length; }