#include "Rover.h" #include "version.h" #if LOGGING_ENABLED == ENABLED #if CLI_ENABLED == ENABLED // Code to interact with the user to dump or erase logs // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command log_menu_commands[] = { {"dump", MENU_FUNC(dump_log)}, {"erase", MENU_FUNC(erase_logs)}, {"enable", MENU_FUNC(select_logs)}, {"disable", MENU_FUNC(select_logs)} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, FUNCTOR_BIND(&rover, &Rover::print_log_menu, bool)); bool Rover::print_log_menu(void) { cliSerial->printf("logs enabled: "); if (0 == g.log_bitmask) { cliSerial->printf("none"); } else { // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // the bit being set and print the name of the log option to suit. #define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf(" %s", #_s) PLOG(ATTITUDE_FAST); PLOG(ATTITUDE_MED); PLOG(GPS); PLOG(PM); PLOG(CTUN); PLOG(NTUN); PLOG(MODE); PLOG(IMU); PLOG(CMD); PLOG(CURRENT); PLOG(RANGEFINDER); PLOG(COMPASS); PLOG(CAMERA); PLOG(STEERING); #undef PLOG } cliSerial->printf("\n"); DataFlash.ListAvailableLogs(cliSerial); return(true); } int8_t Rover::dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log_num; uint16_t dump_log_start; uint16_t dump_log_end; // check that the requested log number can be read dump_log_num = argv[1].i; if (dump_log_num == -2) { DataFlash.DumpPageInfo(cliSerial); return(-1); } else if (dump_log_num <= 0) { cliSerial->printf("dumping all\n"); Log_Read(0, 1, 0); return(-1); } else if ((argc != 2) || (static_cast(dump_log_num) > DataFlash.get_num_logs())) { cliSerial->printf("bad log number\n"); return(-1); } DataFlash.get_log_boundaries(dump_log_num, dump_log_start, dump_log_end); Log_Read(static_cast(dump_log_num), dump_log_start, dump_log_end); return 0; } int8_t Rover::erase_logs(uint8_t argc, const Menu::arg *argv) { DataFlash.EnableWrites(false); do_erase_logs(); DataFlash.EnableWrites(true); return 0; } int8_t Rover::select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits = 0; if (argc != 2) { cliSerial->printf("missing log type\n"); return(-1); } // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp(argv[1].str, "all")) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp(argv[1].str, #_s)) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(IMU); TARG(CMD); TARG(CURRENT); TARG(RANGEFINDER); TARG(COMPASS); TARG(CAMERA); TARG(STEERING); #undef TARG } if (!strcasecmp(argv[0].str, "enable")) { g.log_bitmask.set_and_save(g.log_bitmask | bits); } else { g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } int8_t Rover::process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } #endif // CLI_ENABLED == ENABLED void Rover::do_erase_logs(void) { cliSerial->printf("\nErasing log...\n"); DataFlash.EraseAll(); cliSerial->printf("\nLog erased.\n"); } struct PACKED log_Performance { LOG_PACKET_HEADER; uint64_t time_us; uint32_t loop_time; uint16_t main_loop_count; uint32_t g_dt_max; int16_t gyro_drift_x; int16_t gyro_drift_y; int16_t gyro_drift_z; uint8_t i2c_lockup_count; uint16_t ins_error_count; uint32_t mem_avail; }; // Write a performance monitoring packet. Total length : 19 bytes void Rover::Log_Write_Performance() { struct log_Performance pkt = { LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG), time_us : AP_HAL::micros64(), loop_time : millis()- perf_mon_timer, main_loop_count : mainLoop_count, g_dt_max : G_Dt_max, gyro_drift_x : (int16_t)(ahrs.get_gyro_drift().x * 1000), gyro_drift_y : (int16_t)(ahrs.get_gyro_drift().y * 1000), gyro_drift_z : (int16_t)(ahrs.get_gyro_drift().z * 1000), i2c_lockup_count: 0, ins_error_count : ins.error_count(), hal.util->available_memory() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Steering { LOG_PACKET_HEADER; uint64_t time_us; float demanded_accel; float achieved_accel; }; // Write a steering packet void Rover::Log_Write_Steering() { struct log_Steering pkt = { LOG_PACKET_HEADER_INIT(LOG_STEERING_MSG), time_us : AP_HAL::micros64(), demanded_accel : control_mode->lateral_acceleration, achieved_accel : ahrs.groundspeed() * ins.get_gyro().z, }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Write beacon position and distances void Rover::Log_Write_Beacon() { // exit immediately if feature is disabled if (!g2.beacon.enabled()) { return; } DataFlash.Log_Write_Beacon(g2.beacon); } struct PACKED log_Startup { LOG_PACKET_HEADER; uint64_t time_us; uint8_t startup_type; uint16_t command_total; }; void Rover::Log_Write_Startup(uint8_t type) { struct log_Startup pkt = { LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG), time_us : AP_HAL::micros64(), startup_type : type, command_total : mission.num_commands() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint64_t time_us; int16_t steer_out; int16_t roll; int16_t pitch; int16_t throttle_out; float accel_y; }; // Write a control tuning packet. Total length : 22 bytes void Rover::Log_Write_Control_Tuning() { const Vector3f accel = ins.get_accel(); struct log_Control_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG), time_us : AP_HAL::micros64(), steer_out : (int16_t)g2.motors.get_steering(), roll : (int16_t)ahrs.roll_sensor, pitch : (int16_t)ahrs.pitch_sensor, throttle_out : (int16_t)g2.motors.get_throttle(), accel_y : accel.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint64_t time_us; uint16_t yaw; float wp_distance; uint16_t target_bearing_cd; uint16_t nav_bearing_cd; int8_t throttle; float xtrack_error; }; // Write a navigation tuning packet void Rover::Log_Write_Nav_Tuning() { struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG), time_us : AP_HAL::micros64(), yaw : static_cast(ahrs.yaw_sensor), wp_distance : control_mode->get_distance_to_destination(), target_bearing_cd : static_cast(fabsf(nav_controller->target_bearing_cd())), nav_bearing_cd : static_cast(fabsf(nav_controller->nav_bearing_cd())), throttle : int8_t(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)), xtrack_error : nav_controller->crosstrack_error() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Write an attitude packet void Rover::Log_Write_Attitude() { const Vector3f targets(0.0f, 0.0f, 0.0f); // Rover does not have attitude targets, use place-holder for commonality with Dataflash Log_Write_Attitude message DataFlash.Log_Write_Attitude(ahrs, targets); #if AP_AHRS_NAVEKF_AVAILABLE #if defined(OPTFLOW) and (OPTFLOW == ENABLED) DataFlash.Log_Write_EKF(ahrs, optflow.enabled()); #else DataFlash.Log_Write_EKF(ahrs, false); #endif DataFlash.Log_Write_AHRS2(ahrs); #endif DataFlash.Log_Write_POS(ahrs); DataFlash.Log_Write_PID(LOG_PIDS_MSG, steerController.get_pid_info()); DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pidSpeedThrottle.get_pid_info()); } struct PACKED log_Rangefinder { LOG_PACKET_HEADER; uint64_t time_us; float lateral_accel; uint16_t rangefinder1_distance; uint16_t rangefinder2_distance; uint16_t detected_count; int8_t turn_angle; uint16_t turn_time; uint16_t ground_speed; int8_t throttle; }; // Write a rangefinder packet void Rover::Log_Write_Rangefinder() { uint16_t turn_time = 0; if (!is_zero(obstacle.turn_angle)) { turn_time = AP_HAL::millis() - obstacle.detected_time_ms; } struct log_Rangefinder pkt = { LOG_PACKET_HEADER_INIT(LOG_RANGEFINDER_MSG), time_us : AP_HAL::micros64(), lateral_accel : control_mode->lateral_acceleration, rangefinder1_distance : rangefinder.distance_cm(0), rangefinder2_distance : rangefinder.distance_cm(1), detected_count : obstacle.detected_count, turn_angle : static_cast(obstacle.turn_angle), turn_time : turn_time, ground_speed : static_cast(fabsf(ground_speed * 100.0f)), throttle : int8_t(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } void Rover::Log_Write_Current() { DataFlash.Log_Write_Current(battery); // also write power status DataFlash.Log_Write_Power(); } struct PACKED log_Arm_Disarm { LOG_PACKET_HEADER; uint64_t time_us; uint8_t arm_state; uint16_t arm_checks; }; void Rover::Log_Arm_Disarm() { struct log_Arm_Disarm pkt = { LOG_PACKET_HEADER_INIT(LOG_ARM_DISARM_MSG), time_us : AP_HAL::micros64(), arm_state : arming.is_armed(), arm_checks : arming.get_enabled_checks() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } void Rover::Log_Write_RC(void) { DataFlash.Log_Write_RCIN(); DataFlash.Log_Write_RCOUT(); if (rssi.enabled()) { DataFlash.Log_Write_RSSI(rssi); } } struct PACKED log_Error { LOG_PACKET_HEADER; uint64_t time_us; uint8_t sub_system; uint8_t error_code; }; // Write an error packet void Rover::Log_Write_Error(uint8_t sub_system, uint8_t error_code) { struct log_Error pkt = { LOG_PACKET_HEADER_INIT(LOG_ERROR_MSG), time_us : AP_HAL::micros64(), sub_system : sub_system, error_code : error_code, }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } void Rover::Log_Write_Baro(void) { DataFlash.Log_Write_Baro(barometer); } // log ahrs home and EKF origin to dataflash void Rover::Log_Write_Home_And_Origin() { #if AP_AHRS_NAVEKF_AVAILABLE // log ekf origin if set Location ekf_orig; if (ahrs.get_origin(ekf_orig)) { DataFlash.Log_Write_Origin(LogOriginType::ekf_origin, ekf_orig); } #endif // log ahrs home if set if (home_is_set != HOME_UNSET) { DataFlash.Log_Write_Origin(LogOriginType::ahrs_home, ahrs.get_home()); } } // guided mode logging struct PACKED log_GuidedTarget { LOG_PACKET_HEADER; uint64_t time_us; uint8_t type; float pos_target_x; float pos_target_y; float pos_target_z; float vel_target_x; float vel_target_y; float vel_target_z; }; // Write a Guided mode target void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) { struct log_GuidedTarget pkt = { LOG_PACKET_HEADER_INIT(LOG_GUIDEDTARGET_MSG), time_us : AP_HAL::micros64(), type : target_type, pos_target_x : pos_target.x, pos_target_y : pos_target.y, pos_target_z : pos_target.z, vel_target_x : vel_target.x, vel_target_y : vel_target.y, vel_target_z : vel_target.z }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // wheel encoder packet struct PACKED log_WheelEncoder { LOG_PACKET_HEADER; uint64_t time_us; float distance_0; uint8_t quality_0; float distance_1; uint8_t quality_1; }; // log wheel encoder information void Rover::Log_Write_WheelEncoder() { // return immediately if no wheel encoders are enabled if (!g2.wheel_encoder.enabled(0) && !g2.wheel_encoder.enabled(1)) { return; } struct log_WheelEncoder pkt = { LOG_PACKET_HEADER_INIT(LOG_WHEELENCODER_MSG), time_us : AP_HAL::micros64(), distance_0 : g2.wheel_encoder.get_distance(0), quality_0 : (uint8_t)constrain_float(g2.wheel_encoder.get_signal_quality(0),0.0f,100.0f), distance_1 : g2.wheel_encoder.get_distance(1), quality_1 : (uint8_t)constrain_float(g2.wheel_encoder.get_signal_quality(1),0.0f,100.0f) }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } const LogStructure Rover::log_structure[] = { LOG_COMMON_STRUCTURES, { LOG_PERFORMANCE_MSG, sizeof(log_Performance), "PM", "QIHIhhhBHI", "TimeUS,LTime,MLC,gDt,GDx,GDy,GDz,I2CErr,INSErr,Mem" }, { LOG_STARTUP_MSG, sizeof(log_Startup), "STRT", "QBH", "TimeUS,SType,CTot" }, { LOG_CTUN_MSG, sizeof(log_Control_Tuning), "CTUN", "Qhcchf", "TimeUS,Steer,Roll,Pitch,ThrOut,AccY" }, { LOG_NTUN_MSG, sizeof(log_Nav_Tuning), "NTUN", "QHfHHbf", "TimeUS,Yaw,WpDist,TargBrg,NavBrg,Thr,XT" }, { LOG_RANGEFINDER_MSG, sizeof(log_Rangefinder), "RGFD", "QfHHHbHCb", "TimeUS,LatAcc,R1Dist,R2Dist,DCnt,TAng,TTim,Spd,Thr" }, { LOG_ARM_DISARM_MSG, sizeof(log_Arm_Disarm), "ARM", "QBH", "TimeUS,ArmState,ArmChecks" }, { LOG_STEERING_MSG, sizeof(log_Steering), "STER", "Qff", "TimeUS,Demanded,Achieved" }, { LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget), "GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ" }, { LOG_ERROR_MSG, sizeof(log_Error), "ERR", "QBB", "TimeUS,Subsys,ECode" }, { LOG_WHEELENCODER_MSG, sizeof(log_WheelEncoder), "WENC", "Qfbfb", "TimeUS,Dist0,Qual0,Dist1,Qual1" }, }; void Rover::log_init(void) { DataFlash.Init(log_structure, ARRAY_SIZE(log_structure)); gcs().reset_cli_timeout(); } #if CLI_ENABLED == ENABLED // Read the DataFlash log memory : Packet Parser void Rover::Log_Read(uint16_t list_entry, uint16_t start_page, uint16_t end_page) { cliSerial->printf("\n" FIRMWARE_STRING "\nFree RAM: %u\n", static_cast(hal.util->available_memory())); cliSerial->printf("%s\n", HAL_BOARD_NAME); DataFlash.LogReadProcess(list_entry, start_page, end_page, FUNCTOR_BIND_MEMBER(&Rover::print_mode, void, AP_HAL::BetterStream *, uint8_t), cliSerial); } #endif // CLI_ENABLED void Rover::Log_Write_Vehicle_Startup_Messages() { // only 200(?) bytes are guaranteed by DataFlash Log_Write_Startup(TYPE_GROUNDSTART_MSG); DataFlash.Log_Write_Mode(control_mode->mode_number(), control_mode_reason); Log_Write_Home_And_Origin(); gps.Write_DataFlash_Log_Startup_messages(); } #else // LOGGING_ENABLED // dummy functions void Rover::Log_Write_Startup(uint8_t type) {} void Rover::Log_Write_Current() {} void Rover::Log_Write_Nav_Tuning() {} void Rover::Log_Write_Performance() {} int8_t Rover::process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } void Rover::Log_Write_Control_Tuning() {} void Rover::Log_Write_Rangefinder() {} void Rover::Log_Write_Attitude() {} void Rover::Log_Write_RC(void) {} void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {} void Rover::Log_Write_Home_And_Origin() {} void Rover::Log_Write_Baro(void) {} void Rover::Log_Arm_Disarm() {} void Rover::Log_Write_Error(uint8_t sub_system, uint8_t error_code) {} void Rover::Log_Write_Steering() {} void Rover::Log_Write_WheelEncoder() {} #endif // LOGGING_ENABLED