/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_Proximity_MAV.h" #include #include #include extern const AP_HAL::HAL& hal; /* The constructor also initialises the proximity sensor. Note that this constructor is not called until detect() returns true, so we already know that we should setup the proximity sensor */ AP_Proximity_MAV::AP_Proximity_MAV(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : AP_Proximity_Backend(_frontend, _state) { } // update the state of the sensor void AP_Proximity_MAV::update(void) { // check for timeout and set health status if ((_last_update_ms == 0) || (AP_HAL::millis() - _last_update_ms > PROXIMITY_MAV_TIMEOUT_MS)) { set_status(AP_Proximity::Proximity_NoData); } else { set_status(AP_Proximity::Proximity_Good); } } // handle mavlink DISTANCE_SENSOR messages void AP_Proximity_MAV::handle_msg(mavlink_message_t *msg) { mavlink_distance_sensor_t packet; mavlink_msg_distance_sensor_decode(msg, &packet); // store distance to appropriate sector based on orientation field if (packet.orientation <= MAV_SENSOR_ROTATION_YAW_315) { uint8_t sector = packet.orientation; _angle[sector] = sector * 45; _distance[sector] = packet.current_distance / 100.0f; _distance_valid[sector] = true; _distance_min = packet.min_distance / 100.0f; _distance_max = packet.max_distance / 100.0f; _last_update_ms = AP_HAL::millis(); } }