/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "AP_InertialSensor_HIL.h" #include const extern AP_HAL::HAL& hal; AP_InertialSensor_HIL::AP_InertialSensor_HIL() : AP_InertialSensor() { _accel[0] = Vector3f(0, 0, -GRAVITY_MSS); } uint16_t AP_InertialSensor_HIL::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _sample_period_ms = 20; break; case RATE_100HZ: _sample_period_ms = 10; break; case RATE_200HZ: _sample_period_ms = 5; break; case RATE_400HZ: _sample_period_ms = 2.5; break; } return AP_PRODUCT_ID_NONE; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_HIL::update( void ) { uint32_t now = hal.scheduler->millis(); _delta_time_usec = (now - _last_update_ms) * 1000; _last_update_ms = now; return true; } float AP_InertialSensor_HIL::get_delta_time() const { return _sample_period_ms * 0.001f; } float AP_InertialSensor_HIL::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } bool AP_InertialSensor_HIL::_sample_available() { uint16_t ret = (hal.scheduler->millis() - _last_update_ms) / _sample_period_ms; return ret > 0; } bool AP_InertialSensor_HIL::wait_for_sample(uint16_t timeout_ms) { if (_sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { hal.scheduler->delay(1); if (_sample_available()) { return true; } } return false; } void AP_InertialSensor_HIL::set_accel(const Vector3f &accel) { _previous_accel[0] = _accel[0]; _accel[0] = accel; _last_accel_usec = hal.scheduler->micros(); } void AP_InertialSensor_HIL::set_gyro(const Vector3f &gyro) { _gyro[0] = gyro; _last_gyro_usec = hal.scheduler->micros(); } /** try to detect bad accel/gyro sensors */ bool AP_InertialSensor_HIL::healthy(void) const { uint32_t tnow = hal.scheduler->micros(); if ((tnow - _last_accel_usec) > 40000) { // accels have not updated return false; } if ((tnow - _last_gyro_usec) > 40000) { // gyros have not updated return false; } if (fabs(_accel[0].x) > 30 && fabs(_accel[0].y) > 30 && fabs(_accel[0].z) > 30 && (_previous_accel[0] - _accel[0]).length() < 0.01f) { // unchanging accel, large in all 3 axes. This is a likely // accelerometer failure return false; } return true; }