/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_BoardConfig - board specific configuration */ #include #include #include "AP_BoardConfig.h" #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include #include #include #include #include #include #if defined(CONFIG_ARCH_BOARD_PX4FMU_V1) #define BOARD_PWM_COUNT_DEFAULT 2 #define BOARD_SER1_RTSCTS_DEFAULT 0 // no flow control on UART5 on FMUv1 #elif defined(CONFIG_ARCH_BOARD_PX4FMU_V4) #define BOARD_PWM_COUNT_DEFAULT 6 #define BOARD_SER1_RTSCTS_DEFAULT 2 #else // V2 #define BOARD_PWM_COUNT_DEFAULT 4 #define BOARD_SER1_RTSCTS_DEFAULT 2 #endif #elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #endif extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_BoardConfig::var_info[] = { #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // @Param: PWM_COUNT // @DisplayName: Auxiliary pin config // @Description: Control assigning of FMU pins to PWM output, timer capture and GPIO. All unassigned pins can be used for GPIO // @Values: 0:No PWMs,2:Two PWMs,4:Four PWMs,6:Six PWMs,7:Three PWMs and One Capture // @RebootRequired: True AP_GROUPINFO("PWM_COUNT", 0, AP_BoardConfig, _pwm_count, BOARD_PWM_COUNT_DEFAULT), // @Param: SER1_RTSCTS // @DisplayName: Serial 1 flow control // @Description: Enable flow control on serial 1 (telemetry 1) on Pixhawk. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. Note that the PX4v1 does not have hardware flow control pins on this port, so you should leave this disabled. // @Values: 0:Disabled,1:Enabled,2:Auto // @RebootRequired: True AP_GROUPINFO("SER1_RTSCTS", 1, AP_BoardConfig, _ser1_rtscts, BOARD_SER1_RTSCTS_DEFAULT), // @Param: SER2_RTSCTS // @DisplayName: Serial 2 flow control // @Description: Enable flow control on serial 2 (telemetry 2) on Pixhawk and PX4. You must have the RTS and CTS pins connected to your radio. The standard DF13 6 pin connector for a 3DR radio does have those pins connected. If this is set to 2 then flow control will be auto-detected by checking for the output buffer filling on startup. // @Values: 0:Disabled,1:Enabled,2:Auto // @RebootRequired: True AP_GROUPINFO("SER2_RTSCTS", 2, AP_BoardConfig, _ser2_rtscts, 2), // @Param: SAFETYENABLE // @DisplayName: Enable use of safety arming switch // @Description: This controls the default state of the safety switch at startup. When set to 1 the safety switch will start in the safe state (flashing) at boot. When set to zero the safety switch will start in the unsafe state (solid) at startup. Note that if a safety switch is fitted the user can still control the safety state after startup using the switch. The safety state can also be controlled in software using a MAVLink message. // @Values: 0:Disabled,1:Enabled // @RebootRequired: True AP_GROUPINFO("SAFETYENABLE", 3, AP_BoardConfig, _safety_enable, 1), // @Param: SBUS_OUT // @DisplayName: SBUS output rate // @Description: This sets the SBUS output frame rate in Hz // @Values: 0:Disabled,1:50Hz,2:75Hz,3:100Hz,4:150Hz,5:200Hz,6:250Hz,7:300Hz // @RebootRequired: True AP_GROUPINFO("SBUS_OUT", 4, AP_BoardConfig, _sbus_out_rate, 0), #elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #endif // @Param: SERIAL_NUM // @DisplayName: User-defined serial number // @Description: User-defined serial number of this vehicle, it can be any arbitrary number you want and has no effect on the autopilot // @Range: -32767 32768 // @User: Standard AP_GROUPINFO("SERIAL_NUM", 5, AP_BoardConfig, vehicleSerialNumber, 0), #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 && !defined(CONFIG_ARCH_BOARD_PX4FMU_V1) // @Param: CAN_ENABLE // @DisplayName: Enable use of UAVCAN devices // @Description: Enabling this option on a Pixhawk enables UAVCAN devices. Note that this uses about 25k of memory // @Values: 0:Disabled,1:Enabled AP_GROUPINFO("CAN_ENABLE", 6, AP_BoardConfig, _can_enable, 0), #endif #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // @Param: SAFETY_MASK // @DisplayName: Channels to which ignore the safety switch state // @Description: A bitmask which controls what channels can move while the safety switch has not been pressed // @Values: 0:Disabled,1:Enabled // @Bitmask: 0:Ch1,1:Ch2,2:Ch3,3:Ch4,4:Ch5,5:Ch6,6:Ch7,7:Ch8 // @RebootRequired: True AP_GROUPINFO("SAFETY_MASK", 7, AP_BoardConfig, _ignore_safety_channels, 0), #endif #if HAL_HAVE_IMU_HEATER // @Param: IMU_TARGTEMP // @DisplayName: Target IMU temperature // @Description: This sets the target IMU temperature for boards with controllable IMU heating units. A value of -1 disables heating. // @Range: -1 80 // @Units: degreesC AP_GROUPINFO("IMU_TARGTEMP", 8, AP_BoardConfig, _imu_target_temperature, HAL_IMU_TEMP_DEFAULT), #endif AP_GROUPEND }; #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 && !defined(CONFIG_ARCH_BOARD_PX4FMU_V1) extern "C" int uavcan_main(int argc, const char *argv[]); #define _UAVCAN_IOCBASE (0x4000) // IOCTL base for module UAVCAN #define _UAVCAN_IOC(_n) (_IOC(_UAVCAN_IOCBASE, _n)) #define UAVCAN_IOCG_NODEID_INPROGRESS _UAVCAN_IOC(1) // query if node identification is in progress #endif void AP_BoardConfig::init() { #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 /* configure the FMU driver for the right number of PWMs */ static const struct { uint8_t mode_parm; uint8_t mode_value; uint8_t num_gpios; } mode_table[] = { /* table mapping BRD_PWM_COUNT to ioctl arguments */ { 0, PWM_SERVO_MODE_NONE, 6 }, { 2, PWM_SERVO_MODE_2PWM, 4 }, { 4, PWM_SERVO_MODE_4PWM, 2 }, { 6, PWM_SERVO_MODE_6PWM, 0 }, { 7, PWM_SERVO_MODE_3PWM1CAP, 2 }, }; uint8_t mode_parm = (uint8_t)_pwm_count.get(); uint8_t i; for (i=0; iprintf("RCOutput: invalid BRD_PWM_COUNT %u\n", mode_parm); } else { int fd = open("/dev/px4fmu", 0); if (fd == -1) { AP_HAL::panic("Unable to open /dev/px4fmu"); } if (ioctl(fd, PWM_SERVO_SET_MODE, mode_table[i].mode_value) != 0) { hal.console->printf("RCOutput: unable to setup AUX PWM with BRD_PWM_COUNT %u\n", mode_parm); } close(fd); if (mode_table[i].num_gpios < 2) { // reduce change of config mistake where relay and PWM interfere AP_Param::set_default_by_name("RELAY_PIN", -1); AP_Param::set_default_by_name("RELAY_PIN2", -1); } } // setup channels to ignore the armed state int px4io_fd = open("/dev/px4io", 0); if (px4io_fd != -1) { if (ioctl(px4io_fd, PWM_SERVO_IGNORE_SAFETY, (uint16_t)(0x0000FFFF & _ignore_safety_channels)) != 0) { hal.console->printf("IGNORE_SAFETY failed\n"); } close(px4io_fd); } hal.uartC->set_flow_control((AP_HAL::UARTDriver::flow_control)_ser1_rtscts.get()); if (hal.uartD != NULL) { hal.uartD->set_flow_control((AP_HAL::UARTDriver::flow_control)_ser2_rtscts.get()); } if (_safety_enable.get() == 0) { hal.rcout->force_safety_off(); } if (_sbus_out_rate.get() >= 1) { static const struct { uint8_t value; uint16_t rate; } rates[] = { { 1, 50 }, { 2, 75 }, { 3, 100 }, { 4, 150 }, { 5, 200 }, { 6, 250 }, { 7, 300 } }; uint16_t rate = 300; for (i=0; ienable_sbus_out(rate)) { hal.console->printf("Failed to enable SBUS out\n"); } } #if !defined(CONFIG_ARCH_BOARD_PX4FMU_V1) if (_can_enable >= 1) { const char *args[] = { "uavcan", "start", NULL }; int ret = uavcan_main(3, args); if (ret != 0) { hal.console->printf("UAVCAN: failed to start\n"); } else { hal.console->printf("UAVCAN: started\n"); // give some time for CAN bus initialisation hal.scheduler->delay(2000); } } if (_can_enable >= 2) { const char *args[] = { "uavcan", "start", "fw", NULL }; int ret = uavcan_main(4, args); if (ret != 0) { hal.console->printf("UAVCAN: failed to start servers\n"); } else { uint32_t start_wait_ms = AP_HAL::millis(); int fd = open("/dev/uavcan/esc", 0); // design flaw of uavcan driver, this should be /dev/uavcan/node one day if (fd == -1) { AP_HAL::panic("Configuration invalid - unable to open /dev/uavcan/esc"); } // delay startup, UAVCAN still discovering nodes while (ioctl(fd, UAVCAN_IOCG_NODEID_INPROGRESS,0) == OK && AP_HAL::millis() - start_wait_ms < 7000) { hal.scheduler->delay(500); } hal.console->printf("UAVCAN: node discovery complete\n"); close(fd); } } #endif #elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN /* configure the VRBRAIN driver for the right number of PWMs */ #endif // let the HAL know the target temperature. We pass a pointer as // we want the user to be able to change the parameter without // rebooting hal.util->set_imu_target_temp((int8_t *)&_imu_target_temperature); }