// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #include #include #include #include #include #include "GPS_detect_state.h" #include /** maximum number of GPS instances available on this platform. If more than 1 then redundent sensors may be available */ #define GPS_MAX_INSTANCES 2 #define GPS_RTK_INJECT_TO_ALL 127 class DataFlash_Class; class AP_GPS_Backend; /// @class AP_GPS /// GPS driver main class class AP_GPS { public: // constructor AP_GPS() { AP_Param::setup_object_defaults(this, var_info); } /// Startup initialisation. void init(DataFlash_Class *dataflash, const AP_SerialManager& serial_manager); /// Update GPS state based on possible bytes received from the module. /// This routine must be called periodically (typically at 10Hz or /// more) to process incoming data. void update(void); // GPS driver types enum GPS_Type { GPS_TYPE_NONE = 0, GPS_TYPE_AUTO = 1, GPS_TYPE_UBLOX = 2, GPS_TYPE_MTK = 3, GPS_TYPE_MTK19 = 4, GPS_TYPE_NMEA = 5, GPS_TYPE_SIRF = 6, GPS_TYPE_HIL = 7, GPS_TYPE_SBP = 8, GPS_TYPE_PX4 = 9, GPS_TYPE_SBF = 10, GPS_TYPE_GSOF = 11, GPS_TYPE_QURT = 12, GPS_TYPE_ERB = 13, GPS_TYPE_MAV = 14, GPS_TYPE_NOVA = 15, }; /// GPS status codes enum GPS_Status { NO_GPS = 0, ///< No GPS connected/detected NO_FIX = 1, ///< Receiving valid GPS messages but no lock GPS_OK_FIX_2D = 2, ///< Receiving valid messages and 2D lock GPS_OK_FIX_3D = 3, ///< Receiving valid messages and 3D lock GPS_OK_FIX_3D_DGPS = 4, ///< Receiving valid messages and 3D lock with differential improvements GPS_OK_FIX_3D_RTK = 5, ///< Receiving valid messages and 3D lock, with relative-positioning improvements }; // GPS navigation engine settings. Not all GPS receivers support // this enum GPS_Engine_Setting { GPS_ENGINE_NONE = -1, GPS_ENGINE_PORTABLE = 0, GPS_ENGINE_STATIONARY = 2, GPS_ENGINE_PEDESTRIAN = 3, GPS_ENGINE_AUTOMOTIVE = 4, GPS_ENGINE_SEA = 5, GPS_ENGINE_AIRBORNE_1G = 6, GPS_ENGINE_AIRBORNE_2G = 7, GPS_ENGINE_AIRBORNE_4G = 8 }; enum GPS_Config { GPS_ALL_CONFIGURED = 255 }; /* The GPS_State structure is filled in by the backend driver as it parses each message from the GPS. */ struct GPS_State { uint8_t instance; // the instance number of this GPS // all the following fields must all be filled by the backend driver GPS_Status status; ///< driver fix status uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week) uint16_t time_week; ///< GPS week number Location location; ///< last fix location float ground_speed; ///< ground speed in m/sec float ground_course; ///< ground course in degrees uint16_t hdop; ///< horizontal dilution of precision in cm uint16_t vdop; ///< vertical dilution of precision in cm uint8_t num_sats; ///< Number of visible satellites Vector3f velocity; ///< 3D velocitiy in m/s, in NED format float speed_accuracy; float horizontal_accuracy; float vertical_accuracy; bool have_vertical_velocity:1; ///< does this GPS give vertical velocity? bool have_speed_accuracy:1; bool have_horizontal_accuracy:1; bool have_vertical_accuracy:1; uint32_t last_gps_time_ms; ///< the system time we got the last GPS timestamp, milliseconds }; // Pass mavlink data to message handlers (for MAV type) void handle_msg(mavlink_message_t *msg); // Accessor functions // return number of active GPS sensors. Note that if the first GPS // is not present but the 2nd is then we return 2 uint8_t num_sensors(void) const { return num_instances; } uint8_t primary_sensor(void) const { return primary_instance; } /// Query GPS status GPS_Status status(uint8_t instance) const { return state[instance].status; } GPS_Status status(void) const { return status(primary_instance); } // Query the highest status this GPS supports GPS_Status highest_supported_status(uint8_t instance) const; GPS_Status highest_supported_status(void) const; // location of last fix const Location &location(uint8_t instance) const { return state[instance].location; } const Location &location() const { return location(primary_instance); } bool speed_accuracy(uint8_t instance, float &sacc) const { if(state[instance].have_speed_accuracy) { sacc = state[instance].speed_accuracy; return true; } return false; } bool speed_accuracy(float &sacc) const { return speed_accuracy(primary_instance, sacc); } bool horizontal_accuracy(uint8_t instance, float &hacc) const { if(state[instance].have_horizontal_accuracy) { hacc = state[instance].horizontal_accuracy; return true; } return false; } bool horizontal_accuracy(float &hacc) const { return horizontal_accuracy(primary_instance, hacc); } bool vertical_accuracy(uint8_t instance, float &vacc) const { if(state[instance].have_vertical_accuracy) { vacc = state[instance].vertical_accuracy; return true; } return false; } bool vertical_accuracy(float &vacc) const { return vertical_accuracy(primary_instance, vacc); } // 3D velocity in NED format const Vector3f &velocity(uint8_t instance) const { return state[instance].velocity; } const Vector3f &velocity() const { return velocity(primary_instance); } // ground speed in m/s float ground_speed(uint8_t instance) const { return state[instance].ground_speed; } float ground_speed() const { return ground_speed(primary_instance); } // ground speed in cm/s uint32_t ground_speed_cm(void) { return ground_speed() * 100; } // ground course in centidegrees float ground_course(uint8_t instance) const { return state[instance].ground_course; } float ground_course() const { return ground_course(primary_instance); } int32_t ground_course_cd(uint8_t instance) const { return ground_course(instance) * 100; } int32_t ground_course_cd() const { return ground_course_cd(primary_instance); } // number of locked satellites uint8_t num_sats(uint8_t instance) const { return state[instance].num_sats; } uint8_t num_sats() const { return num_sats(primary_instance); } // GPS time of week in milliseconds uint32_t time_week_ms(uint8_t instance) const { return state[instance].time_week_ms; } uint32_t time_week_ms() const { return time_week_ms(primary_instance); } // GPS week uint16_t time_week(uint8_t instance) const { return state[instance].time_week; } uint16_t time_week() const { return time_week(primary_instance); } // horizontal dilution of precision uint16_t get_hdop(uint8_t instance) const { return state[instance].hdop; } uint16_t get_hdop() const { return get_hdop(primary_instance); } // vertical dilution of precision uint16_t get_vdop(uint8_t instance) const { return state[instance].vdop; } uint16_t get_vdop() const { return get_vdop(primary_instance); } // the time we got our last fix in system milliseconds. This is // used when calculating how far we might have moved since that fix uint32_t last_fix_time_ms(uint8_t instance) const { return timing[instance].last_fix_time_ms; } uint32_t last_fix_time_ms(void) const { return last_fix_time_ms(primary_instance); } // the time we last processed a message in milliseconds. This is // used to indicate that we have new GPS data to process uint32_t last_message_time_ms(uint8_t instance) const { return timing[instance].last_message_time_ms; } uint32_t last_message_time_ms(void) const { return last_message_time_ms(primary_instance); } // convert GPS week and millis to unix epoch in ms static uint64_t time_epoch_convert(uint16_t gps_week, uint32_t gps_ms); // return last fix time since the 1/1/1970 in microseconds uint64_t time_epoch_usec(uint8_t instance); uint64_t time_epoch_usec(void) { return time_epoch_usec(primary_instance); } // return true if the GPS supports vertical velocity values bool have_vertical_velocity(uint8_t instance) const { return state[instance].have_vertical_velocity; } bool have_vertical_velocity(void) const { return have_vertical_velocity(primary_instance); } // the expected lag (in seconds) in the position and velocity readings from the gps float get_lag() const { return 0.2f; } // set position for HIL void setHIL(uint8_t instance, GPS_Status status, uint64_t time_epoch_ms, const Location &location, const Vector3f &velocity, uint8_t num_sats, uint16_t hdop); // set accuracy for HIL void setHIL_Accuracy(uint8_t instance, float vdop, float hacc, float vacc, float sacc, bool _have_vertical_velocity, uint32_t sample_ms); static const struct AP_Param::GroupInfo var_info[]; // dataflash for logging, if available DataFlash_Class *_DataFlash; // configuration parameters AP_Int8 _type[GPS_MAX_INSTANCES]; AP_Int8 _navfilter; AP_Int8 _auto_switch; AP_Int8 _min_dgps; AP_Int16 _sbp_logmask; AP_Int8 _inject_to; uint32_t _last_instance_swap_ms; AP_Int8 _sbas_mode; AP_Int8 _min_elevation; AP_Int8 _raw_data; AP_Int8 _gnss_mode[2]; AP_Int8 _save_config; AP_Int8 _auto_config; // handle sending of initialisation strings to the GPS void send_blob_start(uint8_t instance, const char *_blob, uint16_t size); void send_blob_update(uint8_t instance); // lock out a GPS port, allowing another application to use the port void lock_port(uint8_t instance, bool locked); //Inject a packet of raw binary to a GPS void inject_data(uint8_t *data, uint8_t len); void inject_data(uint8_t instance, uint8_t *data, uint8_t len); //MAVLink Status Sending void send_mavlink_gps_raw(mavlink_channel_t chan); void send_mavlink_gps2_raw(mavlink_channel_t chan); void send_mavlink_gps_rtk(mavlink_channel_t chan); void send_mavlink_gps2_rtk(mavlink_channel_t chan); // Returns the index of the first unconfigured GPS (returns GPS_ALL_CONFIGURED if all instances report as being configured) uint8_t first_unconfigured_gps(void) const; void broadcast_first_configuration_failure_reason(void) const; private: struct GPS_timing { // the time we got our last fix in system milliseconds uint32_t last_fix_time_ms; // the time we got our last fix in system milliseconds uint32_t last_message_time_ms; }; GPS_timing timing[GPS_MAX_INSTANCES]; GPS_State state[GPS_MAX_INSTANCES]; AP_GPS_Backend *drivers[GPS_MAX_INSTANCES]; AP_HAL::UARTDriver *_port[GPS_MAX_INSTANCES]; /// primary GPS instance uint8_t primary_instance:2; /// number of GPS instances present uint8_t num_instances:2; // which ports are locked uint8_t locked_ports:2; // state of auto-detection process, per instance struct detect_state { uint32_t detect_started_ms; uint32_t last_baud_change_ms; uint8_t last_baud; struct UBLOX_detect_state ublox_detect_state; struct MTK_detect_state mtk_detect_state; struct MTK19_detect_state mtk19_detect_state; struct SIRF_detect_state sirf_detect_state; struct NMEA_detect_state nmea_detect_state; struct SBP_detect_state sbp_detect_state; struct ERB_detect_state erb_detect_state; } detect_state[GPS_MAX_INSTANCES]; struct { const char *blob; uint16_t remaining; } initblob_state[GPS_MAX_INSTANCES]; static const uint32_t _baudrates[]; static const char _initialisation_blob[]; static const char _initialisation_raw_blob[]; void detect_instance(uint8_t instance); void update_instance(uint8_t instance); void _broadcast_gps_type(const char *type, uint8_t instance, int8_t baud_index); }; #define GPS_BAUD_TIME_MS 1200