// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS)

// use this to prevent recursion during sensor init
static bool in_mavlink_delay;


// this costs us 51 bytes, but means that low priority
// messages don't block the CPU
static mavlink_statustext_t pending_status;

// true when we have received at least 1 MAVLink packet
static bool mavlink_active;

// true if we are out of time in our event timeslice
static bool	gcs_out_of_time;


// check if a message will fit in the payload space available
#define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false

// prototype this for use inside the GCS class
static void gcs_send_text_fmt(const prog_char_t *fmt, ...);

static void gcs_send_heartbeat(void)
{
    gcs_send_message(MSG_HEARTBEAT);
}

static void gcs_send_deferred(void)
{
    gcs_send_message(MSG_RETRY_DEFERRED);
}

/*
 *  !!NOTE!!
 *
 *  the use of NOINLINE separate functions for each message type avoids
 *  a compiler bug in gcc that would cause it to use far more stack
 *  space than is needed. Without the NOINLINE we use the sum of the
 *  stack needed for each message type. Please be careful to follow the
 *  pattern below when adding any new messages
 */

static NOINLINE void send_heartbeat(mavlink_channel_t chan)
{
    uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
    uint8_t system_status = ap.land_complete ? MAV_STATE_STANDBY : MAV_STATE_ACTIVE;
    uint32_t custom_mode = control_mode;

    // set system as critical if any failsafe have triggered
    if (failsafe.radio || failsafe.low_battery || failsafe.gps || failsafe.gcs)  {
        system_status = MAV_STATE_CRITICAL;
    }
    
    // work out the base_mode. This value is not very useful
    // for APM, but we calculate it as best we can so a generic
    // MAVLink enabled ground station can work out something about
    // what the MAV is up to. The actual bit values are highly
    // ambiguous for most of the APM flight modes. In practice, you
    // only get useful information from the custom_mode, which maps to
    // the APM flight mode and has a well defined meaning in the
    // ArduPlane documentation
    base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
    switch (control_mode) {
    case AUTO:
    case RTL:
    case LOITER:
    case GUIDED:
    case CIRCLE:
        base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
        // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
        // APM does in any mode, as that is defined as "system finds its own goal
        // positions", which APM does not currently do
        break;
    }

    // all modes except INITIALISING have some form of manual
    // override if stick mixing is enabled
    base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;

#if HIL_MODE != HIL_MODE_DISABLED
    base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif

    // we are armed if we are not initialising
    if (motors.armed()) {
        base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
    }

    // indicate we have set a custom mode
    base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;

    mavlink_msg_heartbeat_send(
        chan,
#if (FRAME_CONFIG == QUAD_FRAME)
        MAV_TYPE_QUADROTOR,
#elif (FRAME_CONFIG == TRI_FRAME)
        MAV_TYPE_TRICOPTER,
#elif (FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME)
        MAV_TYPE_HEXAROTOR,
#elif (FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME)
        MAV_TYPE_OCTOROTOR,
#elif (FRAME_CONFIG == HELI_FRAME)
        MAV_TYPE_HELICOPTER,
#else
  #error Unrecognised frame type
#endif
        MAV_AUTOPILOT_ARDUPILOTMEGA,
        base_mode,
        custom_mode,
        system_status);
}

static NOINLINE void send_attitude(mavlink_channel_t chan)
{
    mavlink_msg_attitude_send(
        chan,
        millis(),
        ahrs.roll,
        ahrs.pitch,
        ahrs.yaw,
        omega.x,
        omega.y,
        omega.z);
}

#if AC_FENCE == ENABLED
static NOINLINE void send_limits_status(mavlink_channel_t chan)
{
    fence_send_mavlink_status(chan);
}
#endif


static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops)
{
    uint32_t control_sensors_present;
    uint32_t control_sensors_enabled;
    uint32_t control_sensors_health;

    // default sensors present
    control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;

    // first what sensors/controllers we have
    if (g.compass_enabled) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
    }
    if (g_gps != NULL && g_gps->status() > GPS::NO_GPS) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
    }
#if OPTFLOW == ENABLED
    if (g.optflow_enabled) {
        control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
    }
#endif

    // all present sensors enabled by default except altitude and position control which we will set individually
    control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL);

    switch (control_mode) {
    case ALT_HOLD:
    case AUTO:
    case GUIDED:
    case LOITER:
    case RTL:
    case CIRCLE:
    case LAND:
    case OF_LOITER:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL;
        break;
    case POSITION:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL;
        break;
    case SPORT:
        control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL;
        break;
    }

    // default to all healthy except compass and gps which we set individually
    control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS);
    if (g.compass_enabled && compass.healthy && ahrs.use_compass()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
    }
    if (g_gps != NULL && g_gps->status() > GPS::NO_GPS && !gps_glitch.glitching()) {
        control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
    }

    int16_t battery_current = -1;
    int8_t battery_remaining = -1;

    if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) {
        battery_remaining = battery.capacity_remaining_pct();
        battery_current = battery.current_amps() * 100;
    }

    mavlink_msg_sys_status_send(
        chan,
        control_sensors_present,
        control_sensors_enabled,
        control_sensors_health,
        (uint16_t)(scheduler.load_average(10000) * 1000),
        battery.voltage() * 1000, // mV
        battery_current,        // in 10mA units
        battery_remaining,      // in %
        0, // comm drops %,
        0, // comm drops in pkts,
        0, 0, 0, 0);

}

static void NOINLINE send_meminfo(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2
    extern unsigned __brkval;
    mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory());
#endif
}

static void NOINLINE send_location(mavlink_channel_t chan)
{
    uint32_t fix_time;
    // if we have a GPS fix, take the time as the last fix time. That
    // allows us to correctly calculate velocities and extrapolate
    // positions.
    // If we don't have a GPS fix then we are dead reckoning, and will
    // use the current boot time as the fix time.    
    if (g_gps->status() >= GPS::GPS_OK_FIX_2D) {
        fix_time = g_gps->last_fix_time;
    } else {
        fix_time = millis();
    }
    mavlink_msg_global_position_int_send(
        chan,
        fix_time,
        current_loc.lat,                // in 1E7 degrees
        current_loc.lng,                // in 1E7 degrees
        g_gps->altitude_cm * 10,             // millimeters above sea level
        (current_loc.alt - home.alt) * 10,           // millimeters above ground
        g_gps->velocity_north() * 100,  // X speed cm/s (+ve North)
        g_gps->velocity_east()  * 100,  // Y speed cm/s (+ve East)
        g_gps->velocity_down()  * -100, // Z speed cm/s (+ve up)
        g_gps->ground_course_cd);          // course in 1/100 degree
}

static void NOINLINE send_nav_controller_output(mavlink_channel_t chan)
{
    mavlink_msg_nav_controller_output_send(
        chan,
        nav_roll / 1.0e2f,
        nav_pitch / 1.0e2f,
        wp_bearing / 1.0e2f,
        wp_bearing / 1.0e2f,
        wp_distance / 1.0e2f,
        altitude_error / 1.0e2f,
        0,
        0);
}

static void NOINLINE send_ahrs(mavlink_channel_t chan)
{
    Vector3f omega_I = ahrs.get_gyro_drift();
    mavlink_msg_ahrs_send(
        chan,
        omega_I.x,
        omega_I.y,
        omega_I.z,
        1,
        0,
        ahrs.get_error_rp(),
        ahrs.get_error_yaw());
}

// report simulator state
static void NOINLINE send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
    sitl.simstate_send(chan);
#endif
}

static void NOINLINE send_hwstatus(mavlink_channel_t chan)
{
    mavlink_msg_hwstatus_send(
        chan,
        board_voltage(),
        hal.i2c->lockup_count());
}

static void NOINLINE send_gps_raw(mavlink_channel_t chan)
{
    mavlink_msg_gps_raw_int_send(
        chan,
        g_gps->last_fix_time*(uint64_t)1000,
        g_gps->status(),
        g_gps->latitude,      // in 1E7 degrees
        g_gps->longitude,     // in 1E7 degrees
        g_gps->altitude_cm * 10, // in mm
        g_gps->hdop,
        65535,
        g_gps->ground_speed_cm,  // cm/s
        g_gps->ground_course_cd, // 1/100 degrees,
        g_gps->num_sats);

}

#if HIL_MODE != HIL_MODE_DISABLED
static void NOINLINE send_servo_out(mavlink_channel_t chan)
{
    // normalized values scaled to -10000 to 10000
    // This is used for HIL.  Do not change without discussing with HIL maintainers

#if FRAME_CONFIG == HELI_FRAME

    mavlink_msg_rc_channels_scaled_send(
        chan,
        millis(),
        0, // port 0
        g.rc_1.servo_out,
        g.rc_2.servo_out,
        g.rc_3.radio_out,
        g.rc_4.servo_out,
        0,
        0,
        0,
        0,
        receiver_rssi);
#else
 #if X_PLANE == ENABLED
    /* update by JLN for X-Plane HIL */
    if(motors.armed() && ap.auto_armed) {
        mavlink_msg_rc_channels_scaled_send(
            chan,
            millis(),
            0,         // port 0
            g.rc_1.servo_out,
            g.rc_2.servo_out,
            10000 * g.rc_3.norm_output(),
            g.rc_4.servo_out,
            10000 * g.rc_1.norm_output(),
            10000 * g.rc_2.norm_output(),
            10000 * g.rc_3.norm_output(),
            10000 * g.rc_4.norm_output(),
            receiver_rssi);
    }else{
        mavlink_msg_rc_channels_scaled_send(
            chan,
            millis(),
            0,         // port 0
            0,
            0,
            -10000,
            0,
            10000 * g.rc_1.norm_output(),
            10000 * g.rc_2.norm_output(),
            10000 * g.rc_3.norm_output(),
            10000 * g.rc_4.norm_output(),
            receiver_rssi);
    }

 #else
    mavlink_msg_rc_channels_scaled_send(
        chan,
        millis(),
        0,         // port 0
        g.rc_1.servo_out,
        g.rc_2.servo_out,
        g.rc_3.radio_out,
        g.rc_4.servo_out,
        10000 * g.rc_1.norm_output(),
        10000 * g.rc_2.norm_output(),
        10000 * g.rc_3.norm_output(),
        10000 * g.rc_4.norm_output(),
        receiver_rssi);
 #endif
#endif
}
#endif // HIL_MODE

static void NOINLINE send_radio_in(mavlink_channel_t chan)
{
    mavlink_msg_rc_channels_raw_send(
        chan,
        millis(),
        0, // port
        g.rc_1.radio_in,
        g.rc_2.radio_in,
        g.rc_3.radio_in,
        g.rc_4.radio_in,
        g.rc_5.radio_in,
        g.rc_6.radio_in,
        g.rc_7.radio_in,
        g.rc_8.radio_in,
        receiver_rssi);
}

static void NOINLINE send_radio_out(mavlink_channel_t chan)
{
    mavlink_msg_servo_output_raw_send(
        chan,
        micros(),
        0, // port
        motors.motor_out[AP_MOTORS_MOT_1],
        motors.motor_out[AP_MOTORS_MOT_2],
        motors.motor_out[AP_MOTORS_MOT_3],
        motors.motor_out[AP_MOTORS_MOT_4],
        motors.motor_out[AP_MOTORS_MOT_5],
        motors.motor_out[AP_MOTORS_MOT_6],
        motors.motor_out[AP_MOTORS_MOT_7],
        motors.motor_out[AP_MOTORS_MOT_8]);
}

static void NOINLINE send_vfr_hud(mavlink_channel_t chan)
{
    mavlink_msg_vfr_hud_send(
        chan,
        (float)g_gps->ground_speed_cm / 100.0f,
        (float)g_gps->ground_speed_cm / 100.0f,
        (ahrs.yaw_sensor / 100) % 360,
        g.rc_3.servo_out/10,
        current_loc.alt / 100.0f,
        climb_rate / 100.0f);
}

static void NOINLINE send_raw_imu1(mavlink_channel_t chan)
{
    Vector3f accel = ins.get_accel();
    Vector3f gyro = ins.get_gyro();
    mavlink_msg_raw_imu_send(
        chan,
        micros(),
        accel.x * 1000.0f / GRAVITY_MSS,
        accel.y * 1000.0f / GRAVITY_MSS,
        accel.z * 1000.0f / GRAVITY_MSS,
        gyro.x * 1000.0f,
        gyro.y * 1000.0f,
        gyro.z * 1000.0f,
        compass.mag_x,
        compass.mag_y,
        compass.mag_z);
}

static void NOINLINE send_raw_imu2(mavlink_channel_t chan)
{
    mavlink_msg_scaled_pressure_send(
        chan,
        millis(),
        barometer.get_pressure()*0.01f, // hectopascal
        (barometer.get_pressure() - barometer.get_ground_pressure())*0.01f, // hectopascal
        (int16_t)(barometer.get_temperature()*100)); // 0.01 degrees C
}

static void NOINLINE send_raw_imu3(mavlink_channel_t chan)
{
    Vector3f mag_offsets = compass.get_offsets();
    Vector3f accel_offsets = ins.get_accel_offsets();
    Vector3f gyro_offsets = ins.get_gyro_offsets();

    mavlink_msg_sensor_offsets_send(chan,
                                    mag_offsets.x,
                                    mag_offsets.y,
                                    mag_offsets.z,
                                    compass.get_declination(),
                                    barometer.get_pressure(),
                                    barometer.get_temperature()*100,
                                    gyro_offsets.x,
                                    gyro_offsets.y,
                                    gyro_offsets.z,
                                    accel_offsets.x,
                                    accel_offsets.y,
                                    accel_offsets.z);
}

static void NOINLINE send_current_waypoint(mavlink_channel_t chan)
{
    mavlink_msg_mission_current_send(
        chan,
        (uint16_t)g.command_index);
}

static void NOINLINE send_statustext(mavlink_channel_t chan)
{
    mavlink_msg_statustext_send(
        chan,
        pending_status.severity,
        pending_status.text);
}

// are we still delaying telemetry to try to avoid Xbee bricking?
static bool telemetry_delayed(mavlink_channel_t chan)
{
    uint32_t tnow = millis() >> 10;
    if (tnow > (uint32_t)g.telem_delay) {
        return false;
    }
    if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
        // this is USB telemetry, so won't be an Xbee
        return false;
    }
    // we're either on the 2nd UART, or no USB cable is connected
    // we need to delay telemetry by the TELEM_DELAY time
    return true;
}


// try to send a message, return false if it won't fit in the serial tx buffer
static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
    int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES;

    if (telemetry_delayed(chan)) {
        return false;
    }

    // if we don't have at least 1ms remaining before the main loop
    // wants to fire then don't send a mavlink message. We want to
    // prioritise the main flight control loop over communications
    if (scheduler.time_available_usec() < 800 && motors.armed()) {
        gcs_out_of_time = true;
        return false;
    }

    switch(id) {
    case MSG_HEARTBEAT:
        CHECK_PAYLOAD_SIZE(HEARTBEAT);
        send_heartbeat(chan);
        break;

    case MSG_EXTENDED_STATUS1:
        CHECK_PAYLOAD_SIZE(SYS_STATUS);
        send_extended_status1(chan, packet_drops);
        break;

    case MSG_EXTENDED_STATUS2:
        CHECK_PAYLOAD_SIZE(MEMINFO);
        send_meminfo(chan);
        break;

    case MSG_ATTITUDE:
        CHECK_PAYLOAD_SIZE(ATTITUDE);
        send_attitude(chan);
        break;

    case MSG_LOCATION:
        CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
        send_location(chan);
        break;

    case MSG_NAV_CONTROLLER_OUTPUT:
        CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
        send_nav_controller_output(chan);
        break;

    case MSG_GPS_RAW:
        CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
        send_gps_raw(chan);
        break;

    case MSG_SERVO_OUT:
#if HIL_MODE != HIL_MODE_DISABLED
        CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
        send_servo_out(chan);
#endif
        break;

    case MSG_RADIO_IN:
        CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
        send_radio_in(chan);
        break;

    case MSG_RADIO_OUT:
        CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
        send_radio_out(chan);
        break;

    case MSG_VFR_HUD:
        CHECK_PAYLOAD_SIZE(VFR_HUD);
        send_vfr_hud(chan);
        break;

    case MSG_RAW_IMU1:
        CHECK_PAYLOAD_SIZE(RAW_IMU);
        send_raw_imu1(chan);
        break;

    case MSG_RAW_IMU2:
        CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
        send_raw_imu2(chan);
        break;

    case MSG_RAW_IMU3:
        CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
        send_raw_imu3(chan);
        break;

    case MSG_CURRENT_WAYPOINT:
        CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
        send_current_waypoint(chan);
        break;

    case MSG_NEXT_PARAM:
        CHECK_PAYLOAD_SIZE(PARAM_VALUE);
        if (chan == MAVLINK_COMM_0) {
            gcs0.queued_param_send();
        } else if (gcs3.initialised) {
            gcs3.queued_param_send();
        }
        break;

    case MSG_NEXT_WAYPOINT:
        CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
        if (chan == MAVLINK_COMM_0) {
            gcs0.queued_waypoint_send();
        } else if (gcs3.initialised) {
            gcs3.queued_waypoint_send();
        }
        break;

    case MSG_STATUSTEXT:
        CHECK_PAYLOAD_SIZE(STATUSTEXT);
        send_statustext(chan);
        break;

#if AC_FENCE == ENABLED
    case MSG_LIMITS_STATUS:
        CHECK_PAYLOAD_SIZE(LIMITS_STATUS);
        send_limits_status(chan);
        break;
#endif

    case MSG_AHRS:
        CHECK_PAYLOAD_SIZE(AHRS);
        send_ahrs(chan);
        break;

    case MSG_SIMSTATE:
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
        CHECK_PAYLOAD_SIZE(SIMSTATE);
        send_simstate(chan);
#endif
        break;

    case MSG_HWSTATUS:
        CHECK_PAYLOAD_SIZE(HWSTATUS);
        send_hwstatus(chan);
        break;

    case MSG_RETRY_DEFERRED:
        break; // just here to prevent a warning
    }

    return true;
}


#define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED
static struct mavlink_queue {
    enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES];
    uint8_t next_deferred_message;
    uint8_t num_deferred_messages;
} mavlink_queue[2];

// send a message using mavlink
static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops)
{
    uint8_t i, nextid;
    struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan];

    // see if we can send the deferred messages, if any
    while (q->num_deferred_messages != 0) {
        if (!mavlink_try_send_message(chan,
                                      q->deferred_messages[q->next_deferred_message],
                                      packet_drops)) {
            break;
        }
        q->next_deferred_message++;
        if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) {
            q->next_deferred_message = 0;
        }
        q->num_deferred_messages--;
    }

    if (id == MSG_RETRY_DEFERRED) {
        return;
    }

    // this message id might already be deferred
    for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) {
        if (q->deferred_messages[nextid] == id) {
            // its already deferred, discard
            return;
        }
        nextid++;
        if (nextid == MAX_DEFERRED_MESSAGES) {
            nextid = 0;
        }
    }

    if (q->num_deferred_messages != 0 ||
        !mavlink_try_send_message(chan, id, packet_drops)) {
        // can't send it now, so defer it
        if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) {
            // the defer buffer is full, discard
            return;
        }
        nextid = q->next_deferred_message + q->num_deferred_messages;
        if (nextid >= MAX_DEFERRED_MESSAGES) {
            nextid -= MAX_DEFERRED_MESSAGES;
        }
        q->deferred_messages[nextid] = id;
        q->num_deferred_messages++;
    }
}

void mavlink_send_text(mavlink_channel_t chan, gcs_severity severity, const char *str)
{
    if (telemetry_delayed(chan)) {
        return;
    }

    if (severity == SEVERITY_LOW) {
        // send via the deferred queuing system
        pending_status.severity = (uint8_t)severity;
        strncpy((char *)pending_status.text, str, sizeof(pending_status.text));
        mavlink_send_message(chan, MSG_STATUSTEXT, 0);
    } else {
        // send immediately
        mavlink_msg_statustext_send(
            chan,
            severity,
            str);
    }
}

const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = {
    // @Param: RAW_SENS
    // @DisplayName: Raw sensor stream rate
    // @Description: Raw sensor stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRateRawSensors,      0),

    // @Param: EXT_STAT
    // @DisplayName: Extended status stream rate to ground station
    // @Description: Extended status stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRateExtendedStatus,  0),

    // @Param: RC_CHAN
    // @DisplayName: RC Channel stream rate to ground station
    // @Description: RC Channel stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("RC_CHAN",  2, GCS_MAVLINK, streamRateRCChannels,      0),

    // @Param: RAW_CTRL
    // @DisplayName: Raw Control stream rate to ground station
    // @Description: Raw Control stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRateRawController,   0),

    // @Param: POSITION
    // @DisplayName: Position stream rate to ground station
    // @Description: Position stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRatePosition,        0),

    // @Param: EXTRA1
    // @DisplayName: Extra data type 1 stream rate to ground station
    // @Description: Extra data type 1 stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("EXTRA1",   5, GCS_MAVLINK, streamRateExtra1,          0),

    // @Param: EXTRA2
    // @DisplayName: Extra data type 2 stream rate to ground station
    // @Description: Extra data type 2 stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("EXTRA2",   6, GCS_MAVLINK, streamRateExtra2,          0),

    // @Param: EXTRA3
    // @DisplayName: Extra data type 3 stream rate to ground station
    // @Description: Extra data type 3 stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("EXTRA3",   7, GCS_MAVLINK, streamRateExtra3,          0),

    // @Param: PARAMS
    // @DisplayName: Parameter stream rate to ground station
    // @Description: Parameter stream rate to ground station
    // @Units: Hz
    // @Range: 0 10
    // @Increment: 1
    // @User: Advanced
    AP_GROUPINFO("PARAMS",   8, GCS_MAVLINK, streamRateParams,          0),
    AP_GROUPEND
};


GCS_MAVLINK::GCS_MAVLINK() :
    packet_drops(0),
    waypoint_send_timeout(1000), // 1 second
    waypoint_receive_timeout(1000) // 1 second
{
    AP_Param::setup_object_defaults(this, var_info);
}

void
GCS_MAVLINK::init(AP_HAL::UARTDriver* port)
{
    GCS_Class::init(port);
    if (port == hal.uartA) {
        mavlink_comm_0_port = port;
        chan = MAVLINK_COMM_0;
    }else{
        mavlink_comm_1_port = port;
        chan = MAVLINK_COMM_1;
    }
    _queued_parameter = NULL;
    reset_cli_timeout();
}

void
GCS_MAVLINK::update(void)
{
    // receive new packets
    mavlink_message_t msg;
    mavlink_status_t status;
    status.packet_rx_drop_count = 0;

    // process received bytes
    uint16_t nbytes = comm_get_available(chan);
    for (uint16_t i=0; i<nbytes; i++) {
        uint8_t c = comm_receive_ch(chan);

#if CLI_ENABLED == ENABLED
        /* allow CLI to be started by hitting enter 3 times, if no
         *  heartbeat packets have been received */
        if (mavlink_active == 0 && (millis() - _cli_timeout) < 20000 && 
            !motors.armed() && comm_is_idle(chan)) {
            if (c == '\n' || c == '\r') {
                crlf_count++;
            } else {
                crlf_count = 0;
            }
            if (crlf_count == 3) {
                run_cli(_port);
            }
        }
#endif

        // Try to get a new message
        if (mavlink_parse_char(chan, c, &msg, &status)) {
            // we exclude radio packets to make it possible to use the
            // CLI over the radio
            if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
                mavlink_active = true;
            }
            handleMessage(&msg);
        }
    }

    // Update packet drops counter
    packet_drops += status.packet_rx_drop_count;

    if (!waypoint_receiving && !waypoint_sending) {
        return;
    }

    uint32_t tnow = millis();

    if (waypoint_receiving &&
        waypoint_request_i <= waypoint_request_last &&
        tnow > waypoint_timelast_request + 500 + (stream_slowdown*20)) {
        waypoint_timelast_request = tnow;
        send_message(MSG_NEXT_WAYPOINT);
    }

    // stop waypoint sending if timeout
    if (waypoint_sending && (tnow - waypoint_timelast_send) > waypoint_send_timeout) {
        waypoint_sending = false;
    }

    // stop waypoint receiving if timeout
    if (waypoint_receiving && (tnow - waypoint_timelast_receive) > waypoint_receive_timeout) {
        waypoint_receiving = false;
    }
}

// see if we should send a stream now. Called at 50Hz
bool GCS_MAVLINK::stream_trigger(enum streams stream_num)
{
    uint8_t rate;
    switch (stream_num) {
        case STREAM_RAW_SENSORS:
            rate = streamRateRawSensors.get();
            break;
        case STREAM_EXTENDED_STATUS:
            rate = streamRateExtendedStatus.get();
            break;
        case STREAM_RC_CHANNELS:
            rate = streamRateRCChannels.get();
            break;
        case STREAM_RAW_CONTROLLER:
            rate = streamRateRawController.get();
            break;
        case STREAM_POSITION:
            rate = streamRatePosition.get();
            break;
        case STREAM_EXTRA1:
            rate = streamRateExtra1.get();
            break;
        case STREAM_EXTRA2:
            rate = streamRateExtra2.get();
            break;
        case STREAM_EXTRA3:
            rate = streamRateExtra3.get();
            break;
        case STREAM_PARAMS:
            rate = streamRateParams.get();
            break;
        default:
            rate = 0;
    }

    if (rate == 0) {
        return false;
    }

    if (stream_ticks[stream_num] == 0) {
        // we're triggering now, setup the next trigger point
        if (rate > 50) {
            rate = 50;
        }
        stream_ticks[stream_num] = (50 / rate) + stream_slowdown;
        return true;
    }

    // count down at 50Hz
    stream_ticks[stream_num]--;
    return false;
}

void
GCS_MAVLINK::data_stream_send(void)
{
    if (waypoint_receiving || waypoint_sending) {
        // don't interfere with mission transfer
        return;
    }

    gcs_out_of_time = false;

    if (_queued_parameter != NULL) {
        if (streamRateParams.get() <= 0) {
            streamRateParams.set(50);
        }
        if (stream_trigger(STREAM_PARAMS)) {
            send_message(MSG_NEXT_PARAM);
        }
        // don't send anything else at the same time as parameters
        return;
    }

    if (gcs_out_of_time) return;

    if (in_mavlink_delay) {
        // don't send any other stream types while in the delay callback
        return;
    }

    if (stream_trigger(STREAM_RAW_SENSORS)) {
        send_message(MSG_RAW_IMU1);
        send_message(MSG_RAW_IMU2);
        send_message(MSG_RAW_IMU3);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_EXTENDED_STATUS)) {
        send_message(MSG_EXTENDED_STATUS1);
        send_message(MSG_EXTENDED_STATUS2);
        send_message(MSG_CURRENT_WAYPOINT);
        send_message(MSG_GPS_RAW);
        send_message(MSG_NAV_CONTROLLER_OUTPUT);
        send_message(MSG_LIMITS_STATUS);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_POSITION)) {
        send_message(MSG_LOCATION);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_RAW_CONTROLLER)) {
        send_message(MSG_SERVO_OUT);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_RC_CHANNELS)) {
        send_message(MSG_RADIO_OUT);
        send_message(MSG_RADIO_IN);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_EXTRA1)) {
        send_message(MSG_ATTITUDE);
        send_message(MSG_SIMSTATE);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_EXTRA2)) {
        send_message(MSG_VFR_HUD);
    }

    if (gcs_out_of_time) return;

    if (stream_trigger(STREAM_EXTRA3)) {
        send_message(MSG_AHRS);
        send_message(MSG_HWSTATUS);
    }
}



void
GCS_MAVLINK::send_message(enum ap_message id)
{
    mavlink_send_message(chan,id, packet_drops);
}

void
GCS_MAVLINK::send_text_P(gcs_severity severity, const prog_char_t *str)
{
    mavlink_statustext_t m;
    uint8_t i;
    for (i=0; i<sizeof(m.text); i++) {
        m.text[i] = pgm_read_byte((const prog_char *)(str++));
        if (m.text[i] == '\0') {
            break;
        }
    }
    if (i < sizeof(m.text)) m.text[i] = 0;
    mavlink_send_text(chan, severity, (const char *)m.text);
}

void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
    struct Location tell_command = {};                                  // command for telemetry
    switch (msg->msgid) {

    case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:     //66
    {
        // decode
        mavlink_request_data_stream_t packet;
        mavlink_msg_request_data_stream_decode(msg, &packet);

        if (mavlink_check_target(packet.target_system, packet.target_component))
            break;

        int16_t freq = 0;                 // packet frequency

        if (packet.start_stop == 0)
            freq = 0;                     // stop sending
        else if (packet.start_stop == 1)
            freq = packet.req_message_rate;                     // start sending
        else
            break;

        switch(packet.req_stream_id) {

        case MAV_DATA_STREAM_ALL:
            streamRateRawSensors            = freq;
            streamRateExtendedStatus        = freq;
            streamRateRCChannels            = freq;
            streamRateRawController         = freq;
            streamRatePosition                      = freq;
            streamRateExtra1                        = freq;
            streamRateExtra2                        = freq;
            //streamRateExtra3.set_and_save(freq);	// We just do set and save on the last as it takes care of the whole group.
            streamRateExtra3                        = freq;                             // Don't save!!
            break;

        case MAV_DATA_STREAM_RAW_SENSORS:
            streamRateRawSensors = freq;                                        // We do not set and save this one so that if HIL is shut down incorrectly
            // we will not continue to broadcast raw sensor data at 50Hz.
            break;
        case MAV_DATA_STREAM_EXTENDED_STATUS:
            //streamRateExtendedStatus.set_and_save(freq);
            streamRateExtendedStatus = freq;
            break;

        case MAV_DATA_STREAM_RC_CHANNELS:
            streamRateRCChannels  = freq;
            break;

        case MAV_DATA_STREAM_RAW_CONTROLLER:
            streamRateRawController = freq;
            break;

        //case MAV_DATA_STREAM_RAW_SENSOR_FUSION:
        //	streamRateRawSensorFusion.set_and_save(freq);
        //	break;

        case MAV_DATA_STREAM_POSITION:
            streamRatePosition = freq;
            break;

        case MAV_DATA_STREAM_EXTRA1:
            streamRateExtra1 = freq;
            break;

        case MAV_DATA_STREAM_EXTRA2:
            streamRateExtra2 = freq;
            break;

        case MAV_DATA_STREAM_EXTRA3:
            streamRateExtra3 = freq;
            break;

        default:
            break;
        }
        break;
    }

    case MAVLINK_MSG_ID_COMMAND_LONG:
    {
        // decode
        mavlink_command_long_t packet;
        mavlink_msg_command_long_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system, packet.target_component)) break;

        uint8_t result = MAV_RESULT_UNSUPPORTED;

        // do command
        send_text_P(SEVERITY_LOW,PSTR("command received: "));

        switch(packet.command) {

        case MAV_CMD_NAV_LOITER_UNLIM:
            set_mode(LOITER);
            result = MAV_RESULT_ACCEPTED;
            break;

        case MAV_CMD_NAV_RETURN_TO_LAUNCH:
            set_mode(RTL);
            result = MAV_RESULT_ACCEPTED;
            break;

        case MAV_CMD_NAV_LAND:
            set_mode(LAND);
            result = MAV_RESULT_ACCEPTED;
            break;

        case MAV_CMD_MISSION_START:
            set_mode(AUTO);
            result = MAV_RESULT_ACCEPTED;
            break;

        case MAV_CMD_PREFLIGHT_CALIBRATION:
            if (packet.param1 == 1 ||
                packet.param2 == 1 ||
                packet.param3 == 1) {
                ins.init_accel();
                ahrs.set_trim(Vector3f(0,0,0));             // clear out saved trim
            }
            if (packet.param4 == 1) {
                trim_radio();
            }
            if (packet.param5 == 1) {
                float trim_roll, trim_pitch;
                // this blocks
                AP_InertialSensor_UserInteract_MAVLink interact(chan);
                if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) {
                    // reset ahrs's trim to suggested values from calibration routine
                    ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
                }
            }
            result = MAV_RESULT_ACCEPTED;
            break;

        case MAV_CMD_COMPONENT_ARM_DISARM:
            if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) {
                if (packet.param1 == 1.0f) {
                    // run pre_arm_checks and arm_checks and display failures
                    pre_arm_checks(true);
                    if(ap.pre_arm_check && arm_checks(true)) {
                        init_arm_motors();
                    }
                    result = MAV_RESULT_ACCEPTED;
                } else if (packet.param1 == 0.0f)  {
                    init_disarm_motors();
                    result = MAV_RESULT_ACCEPTED;
                } else {
                    result = MAV_RESULT_UNSUPPORTED;
                }
            } else {
                result = MAV_RESULT_UNSUPPORTED;
            }
            break;

        case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
            if (packet.param1 == 1 || packet.param1 == 3) {
                // when packet.param1 == 3 we reboot to hold in bootloader
                hal.scheduler->reboot(packet.param1 == 3);
                result = MAV_RESULT_ACCEPTED;
            }
            break;


        default:
            result = MAV_RESULT_UNSUPPORTED;
            break;
        }

        mavlink_msg_command_ack_send(
            chan,
            packet.command,
            result);

        break;
    }

    case MAVLINK_MSG_ID_SET_MODE:      //11
    {
        // decode
        mavlink_set_mode_t packet;
        mavlink_msg_set_mode_decode(msg, &packet);

        if (!(packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED)) {
            // we ignore base_mode as there is no sane way to map
            // from that bitmap to a APM flight mode. We rely on
            // custom_mode instead.
            break;
        }
        set_mode(packet.custom_mode);
        break;
    }

    /*case MAVLINK_MSG_ID_SET_NAV_MODE:
     *       {
     *               // decode
     *               mavlink_set_nav_mode_t packet;
     *               mavlink_msg_set_nav_mode_decode(msg, &packet);
     *               // To set some flight modes we must first receive a "set nav mode" message and then a "set mode" message
     *               mav_nav = packet.nav_mode;
     *               break;
     *       }
     */
    case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:     //43
    {
        //send_text_P(SEVERITY_LOW,PSTR("waypoint request list"));

        // decode
        mavlink_mission_request_list_t packet;
        mavlink_msg_mission_request_list_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system, packet.target_component))
            break;

        // Start sending waypoints
        mavlink_msg_mission_count_send(
            chan,msg->sysid,
            msg->compid,
            g.command_total);                     // includes home

        waypoint_timelast_send          = millis();
        waypoint_sending                        = true;
        waypoint_receiving                      = false;
        waypoint_dest_sysid                     = msg->sysid;
        waypoint_dest_compid            = msg->compid;
        break;
    }

    // XXX read a WP from EEPROM and send it to the GCS
    case MAVLINK_MSG_ID_MISSION_REQUEST:     // 40
    {
        //send_text_P(SEVERITY_LOW,PSTR("waypoint request"));

        // Check if sending waypiont
        //if (!waypoint_sending) break;
        // 5/10/11 - We are trying out relaxing the requirement that we be in waypoint sending mode to respond to a waypoint request.  DEW

        // decode
        mavlink_mission_request_t packet;
        mavlink_msg_mission_request_decode(msg, &packet);

        if (mavlink_check_target(packet.target_system, packet.target_component))
            break;

        // send waypoint
        tell_command = get_cmd_with_index(packet.seq);

        // set frame of waypoint
        uint8_t frame;

        if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
            frame = MAV_FRAME_GLOBAL_RELATIVE_ALT;                     // reference frame
        } else {
            frame = MAV_FRAME_GLOBAL;                     // reference frame
        }

        float param1 = 0, param2 = 0, param3 = 0, param4 = 0;

        // time that the mav should loiter in milliseconds
        uint8_t current = 0;                 // 1 (true), 0 (false)

        if (packet.seq == (uint16_t)g.command_index)
            current = 1;

        uint8_t autocontinue = 1;                 // 1 (true), 0 (false)

        float x = 0, y = 0, z = 0;

        if (tell_command.id < MAV_CMD_NAV_LAST) {
            // command needs scaling
            x = tell_command.lat/1.0e7f;                     // local (x), global (latitude)
            y = tell_command.lng/1.0e7f;                     // local (y), global (longitude)
            // ACM is processing alt inside each command. so we save and load raw values. - this is diffrent to APM
            z = tell_command.alt/1.0e2f;                     // local (z), global/relative (altitude)
        }

        // Switch to map APM command fields into MAVLink command fields
        switch (tell_command.id) {

        case MAV_CMD_NAV_LOITER_TURNS:
        case MAV_CMD_CONDITION_CHANGE_ALT:
        case MAV_CMD_DO_SET_HOME:
            param1 = tell_command.p1;
            break;

        case MAV_CMD_NAV_ROI:
        case MAV_CMD_DO_SET_ROI:
            param1 = tell_command.p1;                                   // MAV_ROI (aka roi mode) is held in wp's parameter but we actually do nothing with it because we only support pointing at a specific location provided by x,y and z parameters
            break;

        case MAV_CMD_CONDITION_YAW:
            param3 = tell_command.p1;
            param1 = tell_command.alt;
            param2 = tell_command.lat;
            param4 = tell_command.lng;
            break;

        case MAV_CMD_NAV_TAKEOFF:
            param1 = 0;
            break;

        case MAV_CMD_NAV_LOITER_TIME:
            param1 = tell_command.p1;                                   // ACM loiter time is in 1 second increments
            break;

        case MAV_CMD_CONDITION_DELAY:
        case MAV_CMD_CONDITION_DISTANCE:
            param1 = tell_command.lat;
            break;

        case MAV_CMD_DO_JUMP:
            param2 = tell_command.lat;
            param1 = tell_command.p1;
            break;

        case MAV_CMD_DO_REPEAT_SERVO:
            param4 = tell_command.lng;
        case MAV_CMD_DO_REPEAT_RELAY:
        case MAV_CMD_DO_CHANGE_SPEED:
            param3 = tell_command.lat;
            param2 = tell_command.alt;
            param1 = tell_command.p1;
            break;

        case MAV_CMD_NAV_WAYPOINT:
            param1 = tell_command.p1;
            break;

        case MAV_CMD_DO_SET_PARAMETER:
        case MAV_CMD_DO_SET_RELAY:
        case MAV_CMD_DO_SET_SERVO:
            param2 = tell_command.alt;
            param1 = tell_command.p1;
            break;
        }

        mavlink_msg_mission_item_send(chan,msg->sysid,
                                      msg->compid,
                                      packet.seq,
                                      frame,
                                      tell_command.id,
                                      current,
                                      autocontinue,
                                      param1,
                                      param2,
                                      param3,
                                      param4,
                                      x,
                                      y,
                                      z);

        // update last waypoint comm stamp
        waypoint_timelast_send = millis();
        break;
    }

    case MAVLINK_MSG_ID_MISSION_ACK:     //47
    {
        //send_text_P(SEVERITY_LOW,PSTR("waypoint ack"));

        // decode
        mavlink_mission_ack_t packet;
        mavlink_msg_mission_ack_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;

        // turn off waypoint send
        waypoint_sending = false;
        break;
    }

    case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:     // 21
    {
        // gcs_send_text_P(SEVERITY_LOW,PSTR("param request list"));

        // decode
        mavlink_param_request_list_t packet;
        mavlink_msg_param_request_list_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;

        // Start sending parameters - next call to ::update will kick the first one out

        _queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
        _queued_parameter_index = 0;
        _queued_parameter_count = _count_parameters();
        break;
    }

    case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
    {
        // decode
        mavlink_param_request_read_t packet;
        mavlink_msg_param_request_read_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;
        enum ap_var_type p_type;
        AP_Param *vp;
        char param_name[AP_MAX_NAME_SIZE+1];
        if (packet.param_index != -1) {
            AP_Param::ParamToken token;
            vp = AP_Param::find_by_index(packet.param_index, &p_type, &token);
            if (vp == NULL) {
                gcs_send_text_fmt(PSTR("Unknown parameter index %d"), packet.param_index);
                break;
            }
            vp->copy_name_token(token, param_name, AP_MAX_NAME_SIZE, true);
            param_name[AP_MAX_NAME_SIZE] = 0;
        } else {
            strncpy(param_name, packet.param_id, AP_MAX_NAME_SIZE);
            param_name[AP_MAX_NAME_SIZE] = 0;
            vp = AP_Param::find(param_name, &p_type);
            if (vp == NULL) {
                gcs_send_text_fmt(PSTR("Unknown parameter %.16s"), packet.param_id);
                break;
            }
        }

        float value = vp->cast_to_float(p_type);
        mavlink_msg_param_value_send(
            chan,
            param_name,
            value,
            mav_var_type(p_type),
            _count_parameters(),
            packet.param_index);
        break;
    }

    case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:     // 45
    {
        //send_text_P(SEVERITY_LOW,PSTR("waypoint clear all"));

        // decode
        mavlink_mission_clear_all_t packet;
        mavlink_msg_mission_clear_all_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system, packet.target_component)) break;

        // clear all waypoints
        uint8_t type = 0;                 // ok (0), error(1)
        g.command_total.set_and_save(1);

        // send acknowledgement 3 times to makes sure it is received
        for (int16_t i=0; i<3; i++)
            mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, type);

        break;
    }

    case MAVLINK_MSG_ID_MISSION_SET_CURRENT:     // 41
    {
        //send_text_P(SEVERITY_LOW,PSTR("waypoint set current"));

        // decode
        mavlink_mission_set_current_t packet;
        mavlink_msg_mission_set_current_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;

        // set current command
        change_command(packet.seq);

        mavlink_msg_mission_current_send(chan, g.command_index);
        break;
    }

    case MAVLINK_MSG_ID_MISSION_COUNT:     // 44
    {
        //send_text_P(SEVERITY_LOW,PSTR("waypoint count"));

        // decode
        mavlink_mission_count_t packet;
        mavlink_msg_mission_count_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;

        // start waypoint receiving
        if (packet.count > MAX_WAYPOINTS) {
            packet.count = MAX_WAYPOINTS;
        }
        g.command_total.set_and_save(packet.count);

        waypoint_timelast_receive = millis();
        waypoint_receiving   = true;
        waypoint_sending         = false;
        waypoint_request_i   = 0;
        // note that ArduCopter sets waypoint_request_last to
        // command_total-1, whereas plane and rover use
        // command_total. This is because the copter code assumes
        // command_total includes home
        waypoint_request_last= g.command_total - 1;
        waypoint_timelast_request = 0;
        break;
    }

    case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
    {
        // decode
        mavlink_mission_write_partial_list_t packet;
        mavlink_msg_mission_write_partial_list_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;

        // start waypoint receiving
        if (packet.start_index > g.command_total ||
            packet.end_index > g.command_total ||
            packet.end_index < packet.start_index) {
            send_text_P(SEVERITY_LOW,PSTR("flight plan update rejected"));
            break;
        }

        waypoint_timelast_receive = millis();
        waypoint_timelast_request = 0;
        waypoint_receiving   = true;
        waypoint_request_i   = packet.start_index;
        waypoint_request_last= packet.end_index;
        break;
    }

#ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS
    case MAVLINK_MSG_ID_SET_MAG_OFFSETS:
    {
        mavlink_set_mag_offsets_t packet;
        mavlink_msg_set_mag_offsets_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;
        compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z));
        break;
    }
#endif

    // XXX receive a WP from GCS and store in EEPROM
    case MAVLINK_MSG_ID_MISSION_ITEM:     //39
    {
        // decode
        uint8_t result = MAV_MISSION_ACCEPTED;
        mavlink_mission_item_t packet;
        mavlink_msg_mission_item_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system,packet.target_component)) break;

        // defaults
        tell_command.id = packet.command;

        /*
         *  switch (packet.frame){
         *
         *       case MAV_FRAME_MISSION:
         *       case MAV_FRAME_GLOBAL:
         *               {
         *                       tell_command.lat = 1.0e7*packet.x; // in as DD converted to * t7
         *                       tell_command.lng = 1.0e7*packet.y; // in as DD converted to * t7
         *                       tell_command.alt = packet.z*1.0e2; // in as m converted to cm
         *                       tell_command.options = 0; // absolute altitude
         *                       break;
         *               }
         *
         *       case MAV_FRAME_LOCAL: // local (relative to home position)
         *               {
         *                       tell_command.lat = 1.0e7*ToDeg(packet.x/
         *                       (radius_of_earth*cosf(ToRad(home.lat/1.0e7)))) + home.lat;
         *                       tell_command.lng = 1.0e7*ToDeg(packet.y/radius_of_earth) + home.lng;
         *                       tell_command.alt = packet.z*1.0e2;
         *                       tell_command.options = MASK_OPTIONS_RELATIVE_ALT;
         *                       break;
         *               }
         *       //case MAV_FRAME_GLOBAL_RELATIVE_ALT: // absolute lat/lng, relative altitude
         *       default:
         *               {
         *                       tell_command.lat = 1.0e7 * packet.x; // in as DD converted to * t7
         *                       tell_command.lng = 1.0e7 * packet.y; // in as DD converted to * t7
         *                       tell_command.alt = packet.z * 1.0e2;
         *                       tell_command.options = MASK_OPTIONS_RELATIVE_ALT; // store altitude relative!! Always!!
         *                       break;
         *               }
         *  }
         */

        // we only are supporting Abs position, relative Alt
        tell_command.lat = 1.0e7f * packet.x;                 // in as DD converted to * t7
        tell_command.lng = 1.0e7f * packet.y;                 // in as DD converted to * t7
        tell_command.alt = packet.z * 1.0e2f;
        tell_command.options = 1;                 // store altitude relative to home alt!! Always!!

        switch (tell_command.id) {                                                      // Switch to map APM command fields into MAVLink command fields
        case MAV_CMD_NAV_LOITER_TURNS:
        case MAV_CMD_DO_SET_HOME:
            tell_command.p1 = packet.param1;
            break;

        case MAV_CMD_NAV_ROI:
        case MAV_CMD_DO_SET_ROI:
            tell_command.p1 = packet.param1;                                    // MAV_ROI (aka roi mode) is held in wp's parameter but we actually do nothing with it because we only support pointing at a specific location provided by x,y and z parameters
            break;

        case MAV_CMD_CONDITION_YAW:
            tell_command.p1 = packet.param3;
            tell_command.alt = packet.param1;
            tell_command.lat = packet.param2;
            tell_command.lng = packet.param4;
            break;

        case MAV_CMD_NAV_TAKEOFF:
            tell_command.p1 = 0;
            break;

        case MAV_CMD_CONDITION_CHANGE_ALT:
            tell_command.p1 = packet.param1 * 100;
            break;

        case MAV_CMD_NAV_LOITER_TIME:
            tell_command.p1 = packet.param1;                                    // APM loiter time is in ten second increments
            break;

        case MAV_CMD_CONDITION_DELAY:
        case MAV_CMD_CONDITION_DISTANCE:
            tell_command.lat = packet.param1;
            break;

        case MAV_CMD_DO_JUMP:
            tell_command.lat = packet.param2;
            tell_command.p1  = packet.param1;
            break;

        case MAV_CMD_DO_REPEAT_SERVO:
            tell_command.lng = packet.param4;
        case MAV_CMD_DO_REPEAT_RELAY:
        case MAV_CMD_DO_CHANGE_SPEED:
            tell_command.lat = packet.param3;
            tell_command.alt = packet.param2;
            tell_command.p1 = packet.param1;
            break;

        case MAV_CMD_NAV_WAYPOINT:
            tell_command.p1 = packet.param1;
            break;

        case MAV_CMD_DO_SET_PARAMETER:
        case MAV_CMD_DO_SET_RELAY:
        case MAV_CMD_DO_SET_SERVO:
            tell_command.alt = packet.param2;
            tell_command.p1 = packet.param1;
            break;
        }

        if(packet.current == 2) {                                               //current = 2 is a flag to tell us this is a "guided mode" waypoint and not for the mission
            // initiate guided mode
            do_guided(&tell_command);

            // verify we recevied the command
            mavlink_msg_mission_ack_send(
                chan,
                msg->sysid,
                msg->compid,
                0);

        } else if(packet.current == 3) {                                               //current = 3 is a flag to tell us this is a alt change only

            // add home alt if needed
            if (tell_command.options & MASK_OPTIONS_RELATIVE_ALT) {
                tell_command.alt += home.alt;
            }

            // To-Do: update target altitude for loiter or waypoint controller depending upon nav mode
            // similar to how do_change_alt works
            wp_nav.set_desired_alt(tell_command.alt);

            // verify we recevied the command
            mavlink_msg_mission_ack_send(
                chan,
                msg->sysid,
                msg->compid,
                0);

        } else {
            // Check if receiving waypoints (mission upload expected)
            if (!waypoint_receiving) {
                result = MAV_MISSION_ERROR;
                goto mission_failed;
            }

            // check if this is the requested waypoint
            if (packet.seq != waypoint_request_i) {
                result = MAV_MISSION_INVALID_SEQUENCE;
                goto mission_failed;
            }

                set_cmd_with_index(tell_command, packet.seq);

            // update waypoint receiving state machine
            waypoint_timelast_receive = millis();
            waypoint_timelast_request = 0;
            waypoint_request_i++;

            if (waypoint_request_i > waypoint_request_last) {
                mavlink_msg_mission_ack_send(
                    chan,
                    msg->sysid,
                    msg->compid,
                    result);

                send_text_P(SEVERITY_LOW,PSTR("flight plan received"));
                waypoint_receiving = false;
                // XXX ignores waypoint radius for individual waypoints, can
                // only set WP_RADIUS parameter
            }
        }
        break;

mission_failed:
        // we are rejecting the mission/waypoint
        mavlink_msg_mission_ack_send(
            chan,
            msg->sysid,
            msg->compid,
            result);
        break;
    }

    case MAVLINK_MSG_ID_PARAM_SET:     // 23
    {
        AP_Param                  *vp;
        enum ap_var_type var_type;

        // decode
        mavlink_param_set_t packet;
        mavlink_msg_param_set_decode(msg, &packet);

        if (mavlink_check_target(packet.target_system, packet.target_component))
            break;

        // set parameter

        char key[AP_MAX_NAME_SIZE+1];
        strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE);
        key[AP_MAX_NAME_SIZE] = 0;

        // find the requested parameter
        vp = AP_Param::find(key, &var_type);
        if ((NULL != vp) &&                                                                                     // exists
            !isnan(packet.param_value) &&                                                  // not nan
            !isinf(packet.param_value)) {                                                  // not inf

            // add a small amount before casting parameter values
            // from float to integer to avoid truncating to the
            // next lower integer value.
            float rounding_addition = 0.01;

            // handle variables with standard type IDs
            if (var_type == AP_PARAM_FLOAT) {
                ((AP_Float *)vp)->set_and_save(packet.param_value);
            } else if (var_type == AP_PARAM_INT32) {
                if (packet.param_value < 0) rounding_addition = -rounding_addition;
                float v = packet.param_value+rounding_addition;
                v = constrain_float(v, -2147483648.0, 2147483647.0);
                ((AP_Int32 *)vp)->set_and_save(v);
            } else if (var_type == AP_PARAM_INT16) {
                if (packet.param_value < 0) rounding_addition = -rounding_addition;
                float v = packet.param_value+rounding_addition;
                v = constrain_float(v, -32768, 32767);
                ((AP_Int16 *)vp)->set_and_save(v);
            } else if (var_type == AP_PARAM_INT8) {
                if (packet.param_value < 0) rounding_addition = -rounding_addition;
                float v = packet.param_value+rounding_addition;
                v = constrain_float(v, -128, 127);
                ((AP_Int8 *)vp)->set_and_save(v);
            } else {
                // we don't support mavlink set on this parameter
                break;
            }

            // Report back the new value if we accepted the change
            // we send the value we actually set, which could be
            // different from the value sent, in case someone sent
            // a fractional value to an integer type
            mavlink_msg_param_value_send(
                chan,
                key,
                vp->cast_to_float(var_type),
                mav_var_type(var_type),
                _count_parameters(),
                -1);                         // XXX we don't actually know what its index is...
            DataFlash.Log_Write_Parameter(key, vp->cast_to_float(var_type));
        }

        break;
    }             // end case

    case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: //70
    {
        // allow override of RC channel values for HIL
        // or for complete GCS control of switch position
        // and RC PWM values.
        if(msg->sysid != g.sysid_my_gcs) break;                         // Only accept control from our gcs
        mavlink_rc_channels_override_t packet;
        int16_t v[8];
        mavlink_msg_rc_channels_override_decode(msg, &packet);

        if (mavlink_check_target(packet.target_system,packet.target_component))
            break;

        v[0] = packet.chan1_raw;
        v[1] = packet.chan2_raw;
        v[2] = packet.chan3_raw;
        v[3] = packet.chan4_raw;
        v[4] = packet.chan5_raw;
        v[5] = packet.chan6_raw;
        v[6] = packet.chan7_raw;
        v[7] = packet.chan8_raw;
        hal.rcin->set_overrides(v, 8);

        // record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation
        failsafe.rc_override_active = true;
        // a RC override message is consiered to be a 'heartbeat' from the ground station for failsafe purposes
        failsafe.last_heartbeat_ms = millis();
        break;
    }


#if HIL_MODE != HIL_MODE_DISABLED
    case MAVLINK_MSG_ID_HIL_STATE:
    {
        mavlink_hil_state_t packet;
        mavlink_msg_hil_state_decode(msg, &packet);

        float vel = pythagorous2(packet.vx, packet.vy);
        float cog = wrap_360_cd(ToDeg(atan2f(packet.vx, packet.vy)) * 100);

        // set gps hil sensor
        g_gps->setHIL(packet.time_usec/1000,
                      packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3,
                      vel*1.0e-2, cog*1.0e-2, 0, 10);

        if (gps_base_alt == 0) {
            gps_base_alt = g_gps->altitude_cm;
            current_loc.alt = 0;
        }

        if (!ap.home_is_set) {
            init_home();
        }


        // rad/sec
        Vector3f gyros;
        gyros.x = packet.rollspeed;
        gyros.y = packet.pitchspeed;
        gyros.z = packet.yawspeed;

        // m/s/s
        Vector3f accels;
        accels.x = packet.xacc * (GRAVITY_MSS/1000.0);
        accels.y = packet.yacc * (GRAVITY_MSS/1000.0);
        accels.z = packet.zacc * (GRAVITY_MSS/1000.0);

        ins.set_gyro(gyros);

        ins.set_accel(accels);

        barometer.setHIL(packet.alt*0.001f);
        compass.setHIL(packet.roll, packet.pitch, packet.yaw);

 #if HIL_MODE == HIL_MODE_ATTITUDE
        // set AHRS hil sensor
        ahrs.setHil(packet.roll,packet.pitch,packet.yaw,packet.rollspeed,
                    packet.pitchspeed,packet.yawspeed);
 #endif



        break;
    }
#endif //  HIL_MODE != HIL_MODE_DISABLED


    case MAVLINK_MSG_ID_HEARTBEAT:
    {
        // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
        if(msg->sysid != g.sysid_my_gcs) break;
        failsafe.last_heartbeat_ms = millis();
        pmTest1++;
        break;
    }

#if CAMERA == ENABLED
    case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
    {
        camera.configure_msg(msg);
        break;
    }

    case MAVLINK_MSG_ID_DIGICAM_CONTROL:
    {
        camera.control_msg(msg);
        break;
    }
#endif // CAMERA == ENABLED

#if MOUNT == ENABLED
    case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
    {
        camera_mount.configure_msg(msg);
        break;
    }

    case MAVLINK_MSG_ID_MOUNT_CONTROL:
    {
        camera_mount.control_msg(msg);
        break;
    }

    case MAVLINK_MSG_ID_MOUNT_STATUS:
    {
        camera_mount.status_msg(msg);
        break;
    }
#endif // MOUNT == ENABLED

    case MAVLINK_MSG_ID_RADIO:
    case MAVLINK_MSG_ID_RADIO_STATUS:
    {
        mavlink_radio_t packet;
        mavlink_msg_radio_decode(msg, &packet);
        // use the state of the transmit buffer in the radio to
        // control the stream rate, giving us adaptive software
        // flow control
        if (packet.txbuf < 20 && stream_slowdown < 100) {
            // we are very low on space - slow down a lot
            stream_slowdown += 3;
        } else if (packet.txbuf < 50 && stream_slowdown < 100) {
            // we are a bit low on space, slow down slightly
            stream_slowdown += 1;
        } else if (packet.txbuf > 95 && stream_slowdown > 10) {
            // the buffer has plenty of space, speed up a lot
            stream_slowdown -= 2;
        } else if (packet.txbuf > 90 && stream_slowdown != 0) {
            // the buffer has enough space, speed up a bit
            stream_slowdown--;
        }
        break;
    }

/* To-Do: add back support for polygon type fence
#if AC_FENCE == ENABLED
    // receive an AP_Limits fence point from GCS and store in EEPROM
    // receive a fence point from GCS and store in EEPROM
    case MAVLINK_MSG_ID_FENCE_POINT: {
        mavlink_fence_point_t packet;
        mavlink_msg_fence_point_decode(msg, &packet);
        if (packet.count != geofence_limit.fence_total()) {
            send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
        } else {
            Vector2l point;
            point.x = packet.lat*1.0e7f;
            point.y = packet.lng*1.0e7f;
            geofence_limit.set_fence_point_with_index(point, packet.idx);
        }
        break;
    }
    // send a fence point to GCS
    case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
        mavlink_fence_fetch_point_t packet;
        mavlink_msg_fence_fetch_point_decode(msg, &packet);
        if (mavlink_check_target(packet.target_system, packet.target_component))
            break;
        if (packet.idx >= geofence_limit.fence_total()) {
            send_text_P(SEVERITY_LOW,PSTR("bad fence point"));
        } else {
            Vector2l point = geofence_limit.get_fence_point_with_index(packet.idx);
            mavlink_msg_fence_point_send(chan, 0, 0, packet.idx, geofence_limit.fence_total(),
                                         point.x*1.0e-7f, point.y*1.0e-7f);
        }
        break;
    }
#endif // AC_FENCE ENABLED
*/

    }     // end switch
} // end handle mavlink

uint16_t
GCS_MAVLINK::_count_parameters()
{
    // if we haven't cached the parameter count yet...
    if (0 == _parameter_count) {
        AP_Param  *vp;
        AP_Param::ParamToken token;

        vp = AP_Param::first(&token, NULL);
        do {
            _parameter_count++;
        } while (NULL != (vp = AP_Param::next_scalar(&token, NULL)));
    }
    return _parameter_count;
}

/**
 * queued_param_send - Send the next pending parameter, called from deferred message
 * handling code
 */
void
GCS_MAVLINK::queued_param_send()
{
    // Check to see if we are sending parameters
    if (NULL == _queued_parameter) return;

    AP_Param      *vp;
    float value;

    // copy the current parameter and prepare to move to the next
    vp = _queued_parameter;

    // if the parameter can be cast to float, report it here and break out of the loop
    value = vp->cast_to_float(_queued_parameter_type);

    char param_name[AP_MAX_NAME_SIZE];
    vp->copy_name_token(_queued_parameter_token, param_name, sizeof(param_name), true);

    mavlink_msg_param_value_send(
        chan,
        param_name,
        value,
        mav_var_type(_queued_parameter_type),
        _queued_parameter_count,
        _queued_parameter_index);

    _queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type);
    _queued_parameter_index++;
}

/**
 * queued_waypoint_send - Send the next pending waypoint, called from deferred message
 * handling code
 */
void
GCS_MAVLINK::queued_waypoint_send()
{
    if (waypoint_receiving &&
        waypoint_request_i <= waypoint_request_last) {
        mavlink_msg_mission_request_send(
            chan,
            waypoint_dest_sysid,
            waypoint_dest_compid,
            waypoint_request_i);
    }
}

void GCS_MAVLINK::reset_cli_timeout() {
      _cli_timeout = millis();
}

/*
 *  a delay() callback that processes MAVLink packets. We set this as the
 *  callback in long running library initialisation routines to allow
 *  MAVLink to process packets while waiting for the initialisation to
 *  complete
 */
static void mavlink_delay_cb()
{
    static uint32_t last_1hz, last_50hz, last_5s;

    if (!gcs0.initialised) return;

    in_mavlink_delay = true;

    uint32_t tnow = millis();
    if (tnow - last_1hz > 1000) {
        last_1hz = tnow;
        gcs_send_heartbeat();
        gcs_send_message(MSG_EXTENDED_STATUS1);
    }
    if (tnow - last_50hz > 20) {
        last_50hz = tnow;
        gcs_check_input();
        gcs_data_stream_send();
        gcs_send_deferred();
        notify.update();
    }
    if (tnow - last_5s > 5000) {
        last_5s = tnow;
        gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM..."));
    }
    check_usb_mux();

    in_mavlink_delay = false;
}

/*
 *  send a message on both GCS links
 */
static void gcs_send_message(enum ap_message id)
{
    gcs0.send_message(id);
    if (gcs3.initialised) {
        gcs3.send_message(id);
    }
}

/*
 *  send data streams in the given rate range on both links
 */
static void gcs_data_stream_send(void)
{
    gcs0.data_stream_send();
    if (gcs3.initialised) {
        gcs3.data_stream_send();
    }
}

/*
 *  look for incoming commands on the GCS links
 */
static void gcs_check_input(void)
{
    gcs0.update();
    if (gcs3.initialised) {
        gcs3.update();
    }
}

static void gcs_send_text_P(gcs_severity severity, const prog_char_t *str)
{
    gcs0.send_text_P(severity, str);
    if (gcs3.initialised) {
        gcs3.send_text_P(severity, str);
    }
}

/*
 *  send a low priority formatted message to the GCS
 *  only one fits in the queue, so if you send more than one before the
 *  last one gets into the serial buffer then the old one will be lost
 */
static void gcs_send_text_fmt(const prog_char_t *fmt, ...)
{
    va_list arg_list;
    pending_status.severity = (uint8_t)SEVERITY_LOW;
    va_start(arg_list, fmt);
    hal.util->vsnprintf_P((char *)pending_status.text,
            sizeof(pending_status.text), fmt, arg_list);
    va_end(arg_list);
    mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0);
    if (gcs3.initialised) {
        mavlink_send_message(MAVLINK_COMM_1, MSG_STATUSTEXT, 0);
    }
}