/* Common GCS MAVLink functions for all vehicle types This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include "ap_version.h" #include "GCS.h" #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include #include #include #include #endif extern const AP_HAL::HAL& hal; uint32_t GCS_MAVLINK::last_radio_status_remrssi_ms; uint8_t GCS_MAVLINK::mavlink_active = 0; uint8_t GCS_MAVLINK::chan_is_streaming = 0; uint32_t GCS_MAVLINK::reserve_param_space_start_ms; AP_HAL::Util::perf_counter_t GCS_MAVLINK::_perf_packet; AP_HAL::Util::perf_counter_t GCS_MAVLINK::_perf_update; GCS *GCS::_singleton = nullptr; GCS_MAVLINK::GCS_MAVLINK() { AP_Param::setup_object_defaults(this, var_info); } void GCS_MAVLINK::init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan) { if (!valid_channel(mav_chan)) { return; } _port = port; chan = mav_chan; mavlink_comm_port[chan] = _port; initialised = true; _queued_parameter = nullptr; reset_cli_timeout(); if (!_perf_packet) { _perf_packet = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "GCS_Packet"); } if (!_perf_update) { _perf_update = hal.util->perf_alloc(AP_HAL::Util::PC_ELAPSED, "GCS_Update"); } } /* setup a UART, handling begin() and init() */ void GCS_MAVLINK::setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance) { serialmanager_p = &serial_manager; // search for serial port AP_HAL::UARTDriver *uart; uart = serial_manager.find_serial(protocol, instance); if (uart == nullptr) { // return immediately if not found return; } // get associated mavlink channel mavlink_channel_t mav_chan; if (!serial_manager.get_mavlink_channel(protocol, instance, mav_chan)) { // return immediately in unlikely case mavlink channel cannot be found return; } /* Now try to cope with SiK radios that may be stuck in bootloader mode because CTS was held while powering on. This tells the bootloader to wait for a firmware. It affects any SiK radio with CTS connected that is externally powered. To cope we send 0x30 0x20 at 115200 on startup, which tells the bootloader to reset and boot normally */ uart->begin(115200); AP_HAL::UARTDriver::flow_control old_flow_control = uart->get_flow_control(); uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); for (uint8_t i=0; i<3; i++) { hal.scheduler->delay(1); uart->write(0x30); uart->write(0x20); } // since tcdrain() and TCSADRAIN may not be implemented... hal.scheduler->delay(1); uart->set_flow_control(old_flow_control); // now change back to desired baudrate uart->begin(serial_manager.find_baudrate(protocol, instance)); // and init the gcs instance init(uart, mav_chan); AP_SerialManager::SerialProtocol mavlink_protocol = serialmanager_p->get_mavlink_protocol(mav_chan); mavlink_status_t *status = mavlink_get_channel_status(chan); if (status == nullptr) { return; } if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2) { // load signing key load_signing_key(); if (status->signing == nullptr) { // if signing is off start by sending MAVLink1. status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } // announce that we are MAVLink2 capable hal.util->set_capabilities(MAV_PROTOCOL_CAPABILITY_MAVLINK2); } else if (status) { // user has asked to only send MAVLink1 status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } if (chan == MAVLINK_COMM_0) { // Always start with MAVLink1 on first port for now, to allow for recovery // after experiments with MAVLink2 status->flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } } /** * @brief Send the next pending waypoint, called from deferred message * handling code */ void GCS_MAVLINK::queued_waypoint_send() { if (initialised && waypoint_receiving && waypoint_request_i <= waypoint_request_last) { mavlink_msg_mission_request_send( chan, waypoint_dest_sysid, waypoint_dest_compid, waypoint_request_i, MAV_MISSION_TYPE_MISSION); } } void GCS_MAVLINK::reset_cli_timeout() { _cli_timeout = AP_HAL::millis(); } void GCS_MAVLINK::send_meminfo(void) { unsigned __brkval = 0; uint32_t memory = hal.util->available_memory(); mavlink_msg_meminfo_send(chan, __brkval, memory & 0xFFFF, memory); } // report power supply status void GCS_MAVLINK::send_power_status(void) { mavlink_msg_power_status_send(chan, hal.analogin->board_voltage() * 1000, hal.analogin->servorail_voltage() * 1000, hal.analogin->power_status_flags()); } void GCS_MAVLINK::send_battery_status(const AP_BattMonitor &battery, const uint8_t instance) const { // catch the battery backend not supporting the required number of cells static_assert(sizeof(AP_BattMonitor::cells) >= (sizeof(uint16_t) * MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN), "Not enough battery cells for the MAVLink message"); float temp; bool got_temperature = battery.get_temperature(temp, instance); mavlink_msg_battery_status_send(chan, instance, // id MAV_BATTERY_FUNCTION_UNKNOWN, // function MAV_BATTERY_TYPE_UNKNOWN, // type got_temperature ? ((int16_t) (temp * 100)) : INT16_MAX, // temperature. INT16_MAX if unknown battery.get_cell_voltages(instance).cells, // cell voltages battery.has_current(instance) ? battery.current_amps(instance) * 100 : -1, // current battery.has_current(instance) ? battery.current_total_mah(instance) : -1, // total current -1, // joules used battery.capacity_remaining_pct(instance)); } // returns true if all battery instances were reported bool GCS_MAVLINK::send_battery_status(const AP_BattMonitor &battery) const { for(uint8_t i = 0; i < battery.num_instances(); i++) { CHECK_PAYLOAD_SIZE(BATTERY_STATUS); send_battery_status(battery, i); } return true; } void GCS_MAVLINK::send_distance_sensor(const RangeFinder &rangefinder, const uint8_t instance) const { if (rangefinder.status(instance) != RangeFinder::RangeFinder_NotConnected && rangefinder.status(instance) != RangeFinder::RangeFinder_NoData) { mavlink_msg_distance_sensor_send( chan, AP_HAL::millis(), // time since system boot TODO: take time of measurement rangefinder.min_distance_cm(instance), // minimum distance the sensor can measure in centimeters rangefinder.max_distance_cm(instance), // maximum distance the sensor can measure in centimeters rangefinder.distance_cm(instance), // current distance reading (in cm?) rangefinder.get_sensor_type(instance), // type from MAV_DISTANCE_SENSOR enum instance, // onboard ID of the sensor == instance rangefinder.get_orientation(instance), // direction the sensor faces from MAV_SENSOR_ORIENTATION enum 0); // Measurement covariance in centimeters, 0 for unknown / invalid readings } } bool GCS_MAVLINK::send_distance_sensor(const RangeFinder &rangefinder) const { for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) { CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR); send_distance_sensor(rangefinder, i); } return true; } void GCS_MAVLINK::send_distance_sensor_downward(const RangeFinder &rangefinder) const { // exit immediately if rangefinder is disabled or not downward looking if (!rangefinder.has_data_orient(ROTATION_PITCH_270)) { return; } uint8_t instance; rangefinder.find_instance(ROTATION_PITCH_270, instance); send_distance_sensor(rangefinder, instance); } void GCS_MAVLINK::send_rangefinder_downward(const RangeFinder &rangefinder) const { // exit immediately if rangefinder is disabled or not downward looking if (!rangefinder.has_data_orient(ROTATION_PITCH_270)) { // no sonar to report return; } mavlink_msg_rangefinder_send( chan, rangefinder.distance_cm_orient(ROTATION_PITCH_270) * 0.01f, rangefinder.voltage_mv_orient(ROTATION_PITCH_270) * 0.001f); } // report AHRS2 state void GCS_MAVLINK::send_ahrs2(AP_AHRS &ahrs) { #if AP_AHRS_NAVEKF_AVAILABLE Vector3f euler; struct Location loc {}; if (ahrs.get_secondary_attitude(euler)) { mavlink_msg_ahrs2_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng); } AP_AHRS_NavEKF &_ahrs = reinterpret_cast(ahrs); if (_ahrs.get_NavEKF2().activeCores() > 0 && HAVE_PAYLOAD_SPACE(chan, AHRS3)) { _ahrs.get_NavEKF2().getLLH(loc); _ahrs.get_NavEKF2().getEulerAngles(-1,euler); mavlink_msg_ahrs3_send(chan, euler.x, euler.y, euler.z, loc.alt*1.0e-2f, loc.lat, loc.lng, 0, 0, 0, 0); } #endif } /* handle a MISSION_REQUEST_LIST mavlink packet */ void GCS_MAVLINK::handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_request_list_t packet; mavlink_msg_mission_request_list_decode(msg, &packet); // reply with number of commands in the mission. The GCS will then request each command separately mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands(), MAV_MISSION_TYPE_MISSION); // set variables to help handle the expected sending of commands to the GCS waypoint_receiving = false; // record that we are sending commands (i.e. not receiving) waypoint_dest_sysid = msg->sysid; // record system id of GCS who has requested the commands waypoint_dest_compid = msg->compid; // record component id of GCS who has requested the commands } /* handle a MISSION_REQUEST mavlink packet */ void GCS_MAVLINK::handle_mission_request(AP_Mission &mission, mavlink_message_t *msg) { AP_Mission::Mission_Command cmd; if (msg->msgid == MAVLINK_MSG_ID_MISSION_REQUEST_INT) { // decode mavlink_mission_request_int_t packet; mavlink_msg_mission_request_int_decode(msg, &packet); // retrieve mission from eeprom if (!mission.read_cmd_from_storage(packet.seq, cmd)) { goto mission_item_send_failed; } mavlink_mission_item_int_t ret_packet; memset(&ret_packet, 0, sizeof(ret_packet)); if (!AP_Mission::mission_cmd_to_mavlink_int(cmd, ret_packet)) { goto mission_item_send_failed; } // set packet's current field to 1 if this is the command being executed if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) { ret_packet.current = 1; } else { ret_packet.current = 0; } // set auto continue to 1 ret_packet.autocontinue = 1; // 1 (true), 0 (false) /* avoid the _send() function to save memory, as it avoids the stack usage of the _send() function by using the already declared ret_packet above */ ret_packet.target_system = msg->sysid; ret_packet.target_component = msg->compid; ret_packet.seq = packet.seq; ret_packet.command = cmd.id; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_MISSION_ITEM_INT, (const char *)&ret_packet, MAVLINK_MSG_ID_MISSION_ITEM_MIN_LEN, MAVLINK_MSG_ID_MISSION_ITEM_INT_LEN, MAVLINK_MSG_ID_MISSION_ITEM_INT_CRC); } else { // decode mavlink_mission_request_t packet; mavlink_msg_mission_request_decode(msg, &packet); if (packet.seq != 0 && // always allow HOME to be read packet.seq >= mission.num_commands()) { // try to educate the GCS on the actual size of the mission: mavlink_msg_mission_count_send(chan,msg->sysid, msg->compid, mission.num_commands(), MAV_MISSION_TYPE_MISSION); goto mission_item_send_failed; } // retrieve mission from eeprom if (!mission.read_cmd_from_storage(packet.seq, cmd)) { goto mission_item_send_failed; } mavlink_mission_item_t ret_packet; memset(&ret_packet, 0, sizeof(ret_packet)); if (!AP_Mission::mission_cmd_to_mavlink(cmd, ret_packet)) { goto mission_item_send_failed; } // set packet's current field to 1 if this is the command being executed if (cmd.id == (uint16_t)mission.get_current_nav_cmd().index) { ret_packet.current = 1; } else { ret_packet.current = 0; } // set auto continue to 1 ret_packet.autocontinue = 1; // 1 (true), 0 (false) /* avoid the _send() function to save memory, as it avoids the stack usage of the _send() function by using the already declared ret_packet above */ ret_packet.target_system = msg->sysid; ret_packet.target_component = msg->compid; ret_packet.seq = packet.seq; ret_packet.command = cmd.id; _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_MISSION_ITEM, (const char *)&ret_packet, MAVLINK_MSG_ID_MISSION_ITEM_MIN_LEN, MAVLINK_MSG_ID_MISSION_ITEM_LEN, MAVLINK_MSG_ID_MISSION_ITEM_CRC); } return; mission_item_send_failed: // send failure message mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR, MAV_MISSION_TYPE_MISSION); } /* handle a MISSION_SET_CURRENT mavlink packet */ void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_set_current_t packet; mavlink_msg_mission_set_current_decode(msg, &packet); // set current command if (mission.set_current_cmd(packet.seq)) { mavlink_msg_mission_current_send(chan, packet.seq); } } /* handle a MISSION_COUNT mavlink packet */ void GCS_MAVLINK::handle_mission_count(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_count_t packet; mavlink_msg_mission_count_decode(msg, &packet); // start waypoint receiving if (packet.count > mission.num_commands_max()) { // send NAK mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_NO_SPACE, MAV_MISSION_TYPE_MISSION); return; } // new mission arriving, truncate mission to be the same length mission.truncate(packet.count); // set variables to help handle the expected receiving of commands from the GCS waypoint_timelast_receive = AP_HAL::millis(); // set time we last received commands to now waypoint_receiving = true; // record that we expect to receive commands waypoint_request_i = 0; // reset the next expected command number to zero waypoint_request_last = packet.count; // record how many commands we expect to receive waypoint_timelast_request = 0; // set time we last requested commands to zero } /* handle a MISSION_CLEAR_ALL mavlink packet */ void GCS_MAVLINK::handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_clear_all_t packet; mavlink_msg_mission_clear_all_decode(msg, &packet); // clear all waypoints if (mission.clear()) { // send ack mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_RESULT_ACCEPTED, MAV_MISSION_TYPE_MISSION); }else{ // send nack mavlink_msg_mission_ack_send(chan, msg->sysid, msg->compid, MAV_MISSION_ERROR, MAV_MISSION_TYPE_MISSION); } } /* handle a MISSION_WRITE_PARTIAL_LIST mavlink packet */ void GCS_MAVLINK::handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg) { // decode mavlink_mission_write_partial_list_t packet; mavlink_msg_mission_write_partial_list_decode(msg, &packet); // start waypoint receiving if ((unsigned)packet.start_index > mission.num_commands() || (unsigned)packet.end_index > mission.num_commands() || packet.end_index < packet.start_index) { send_text(MAV_SEVERITY_WARNING,"Flight plan update rejected"); return; } waypoint_timelast_receive = AP_HAL::millis(); waypoint_timelast_request = 0; waypoint_receiving = true; waypoint_request_i = packet.start_index; waypoint_request_last= packet.end_index; } /* handle a GIMBAL_REPORT mavlink packet */ void GCS_MAVLINK::handle_gimbal_report(AP_Mount &mount, mavlink_message_t *msg) const { mount.handle_gimbal_report(chan, msg); } void GCS_MAVLINK::send_text(MAV_SEVERITY severity, const char *str) { GCS_MAVLINK::send_statustext_chan(severity, chan, str); } void GCS_MAVLINK::handle_radio_status(mavlink_message_t *msg, DataFlash_Class &dataflash, bool log_radio) { mavlink_radio_t packet; mavlink_msg_radio_decode(msg, &packet); // record if the GCS has been receiving radio messages from // the aircraft if (packet.remrssi != 0) { last_radio_status_remrssi_ms = AP_HAL::millis(); } // use the state of the transmit buffer in the radio to // control the stream rate, giving us adaptive software // flow control if (packet.txbuf < 20 && stream_slowdown < 100) { // we are very low on space - slow down a lot stream_slowdown += 3; } else if (packet.txbuf < 50 && stream_slowdown < 100) { // we are a bit low on space, slow down slightly stream_slowdown += 1; } else if (packet.txbuf > 95 && stream_slowdown > 10) { // the buffer has plenty of space, speed up a lot stream_slowdown -= 2; } else if (packet.txbuf > 90 && stream_slowdown != 0) { // the buffer has enough space, speed up a bit stream_slowdown--; } //log rssi, noise, etc if logging Performance monitoring data if (log_radio) { dataflash.Log_Write_Radio(packet); } } /* handle an incoming mission item return true if this is the last mission item, otherwise false */ bool GCS_MAVLINK::handle_mission_item(mavlink_message_t *msg, AP_Mission &mission) { MAV_MISSION_RESULT result = MAV_MISSION_ACCEPTED; struct AP_Mission::Mission_Command cmd = {}; bool mission_is_complete = false; uint16_t seq=0; uint16_t current = 0; if (msg->msgid == MAVLINK_MSG_ID_MISSION_ITEM) { mavlink_mission_item_t packet; mavlink_msg_mission_item_decode(msg, &packet); // convert mavlink packet to mission command result = AP_Mission::mavlink_to_mission_cmd(packet, cmd); if (result != MAV_MISSION_ACCEPTED) { goto mission_ack; } seq = packet.seq; current = packet.current; } else { mavlink_mission_item_int_t packet; mavlink_msg_mission_item_int_decode(msg, &packet); // convert mavlink packet to mission command result = AP_Mission::mavlink_int_to_mission_cmd(packet, cmd); if (result != MAV_MISSION_ACCEPTED) { goto mission_ack; } seq = packet.seq; current = packet.current; } if (current == 2) { // current = 2 is a flag to tell us this is a "guided mode" // waypoint and not for the mission result = (handle_guided_request(cmd) ? MAV_MISSION_ACCEPTED : MAV_MISSION_ERROR) ; // verify we received the command goto mission_ack; } if (current == 3) { //current = 3 is a flag to tell us this is a alt change only // add home alt if needed handle_change_alt_request(cmd); // verify we recevied the command result = MAV_MISSION_ACCEPTED; goto mission_ack; } // Check if receiving waypoints (mission upload expected) if (!waypoint_receiving) { result = MAV_MISSION_ERROR; goto mission_ack; } // check if this is the requested waypoint if (seq != waypoint_request_i) { result = MAV_MISSION_INVALID_SEQUENCE; goto mission_ack; } // sanity check for DO_JUMP command if (cmd.id == MAV_CMD_DO_JUMP) { if ((cmd.content.jump.target >= mission.num_commands() && cmd.content.jump.target >= waypoint_request_last) || cmd.content.jump.target == 0) { result = MAV_MISSION_ERROR; goto mission_ack; } } // if command index is within the existing list, replace the command if (seq < mission.num_commands()) { if (mission.replace_cmd(seq,cmd)) { result = MAV_MISSION_ACCEPTED; }else{ result = MAV_MISSION_ERROR; goto mission_ack; } // if command is at the end of command list, add the command } else if (seq == mission.num_commands()) { if (mission.add_cmd(cmd)) { result = MAV_MISSION_ACCEPTED; }else{ result = MAV_MISSION_ERROR; goto mission_ack; } // if beyond the end of the command list, return an error } else { result = MAV_MISSION_ERROR; goto mission_ack; } // update waypoint receiving state machine waypoint_timelast_receive = AP_HAL::millis(); waypoint_request_i++; if (waypoint_request_i >= waypoint_request_last) { mavlink_msg_mission_ack_send_buf( msg, chan, msg->sysid, msg->compid, MAV_MISSION_ACCEPTED, MAV_MISSION_TYPE_MISSION); send_text(MAV_SEVERITY_INFO,"Flight plan received"); waypoint_receiving = false; mission_is_complete = true; // XXX ignores waypoint radius for individual waypoints, can // only set WP_RADIUS parameter } else { waypoint_timelast_request = AP_HAL::millis(); // if we have enough space, then send the next WP immediately if (HAVE_PAYLOAD_SPACE(chan, MISSION_ITEM)) { queued_waypoint_send(); } else { send_message(MSG_NEXT_WAYPOINT); } } return mission_is_complete; mission_ack: // we are rejecting the mission/waypoint mavlink_msg_mission_ack_send_buf( msg, chan, msg->sysid, msg->compid, result, MAV_MISSION_TYPE_MISSION); return mission_is_complete; } void GCS_MAVLINK::handle_gps_inject(const mavlink_message_t *msg, AP_GPS &gps) { mavlink_gps_inject_data_t packet; mavlink_msg_gps_inject_data_decode(msg, &packet); //TODO: check target gps.inject_data(packet.data, packet.len); } // send a message using mavlink, handling message queueing void GCS_MAVLINK::send_message(enum ap_message id) { uint8_t i, nextid; if (id == MSG_HEARTBEAT) { save_signing_timestamp(false); } // see if we can send the deferred messages, if any while (num_deferred_messages != 0) { if (!try_send_message(deferred_messages[next_deferred_message])) { break; } next_deferred_message++; if (next_deferred_message == MSG_RETRY_DEFERRED) { next_deferred_message = 0; } num_deferred_messages--; } if (id == MSG_RETRY_DEFERRED) { return; } // this message id might already be deferred for (i=0, nextid = next_deferred_message; i < num_deferred_messages; i++) { if (deferred_messages[nextid] == id) { // it's already deferred, discard return; } nextid++; if (nextid == MSG_RETRY_DEFERRED) { nextid = 0; } } if (num_deferred_messages != 0 || !try_send_message(id)) { // can't send it now, so defer it if (num_deferred_messages == MSG_RETRY_DEFERRED) { // the defer buffer is full, discard return; } nextid = next_deferred_message + num_deferred_messages; if (nextid >= MSG_RETRY_DEFERRED) { nextid -= MSG_RETRY_DEFERRED; } deferred_messages[nextid] = id; num_deferred_messages++; } } void GCS_MAVLINK::packetReceived(const mavlink_status_t &status, mavlink_message_t &msg) { // we exclude radio packets to make it possible to use the // CLI over the radio if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) { mavlink_active |= (1U<<(chan-MAVLINK_COMM_0)); } if (!(status.flags & MAVLINK_STATUS_FLAG_IN_MAVLINK1) && (status.flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) && serialmanager_p && serialmanager_p->get_mavlink_protocol(chan) == AP_SerialManager::SerialProtocol_MAVLink2) { // if we receive any MAVLink2 packets on a connection // currently sending MAVLink1 then switch to sending // MAVLink2 mavlink_status_t *cstatus = mavlink_get_channel_status(chan); if (cstatus != nullptr) { cstatus->flags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1; } } // if a snoop handler has been setup then use it if (msg_snoop != nullptr) { msg_snoop(&msg); } if (routing.check_and_forward(chan, &msg) && accept_packet(status, msg)) { handleMessage(&msg); } } void GCS_MAVLINK::update(run_cli_fn run_cli, uint32_t max_time_us) { // receive new packets mavlink_message_t msg; mavlink_status_t status; uint32_t tstart_us = AP_HAL::micros(); hal.util->perf_begin(_perf_update); status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; iperf_begin(_perf_packet); packetReceived(status, msg); hal.util->perf_end(_perf_packet); parsed_packet = true; } if (parsed_packet || i % 100 == 0) { // make sure we don't spend too much time parsing mavlink messages if (AP_HAL::micros() - tstart_us > max_time_us) { break; } } } if (!waypoint_receiving) { hal.util->perf_end(_perf_update); return; } uint32_t tnow = AP_HAL::millis(); uint32_t wp_recv_time = 1000U + (stream_slowdown*20); // stop waypoint receiving if timeout if (waypoint_receiving && (tnow - waypoint_timelast_receive) > wp_recv_time+waypoint_receive_timeout) { waypoint_receiving = false; } else if (waypoint_receiving && (tnow - waypoint_timelast_request) > wp_recv_time) { waypoint_timelast_request = tnow; send_message(MSG_NEXT_WAYPOINT); } hal.util->perf_end(_perf_update); } /* send raw GPS position information (GPS_RAW_INT, GPS2_RAW, GPS_RTK and GPS2_RTK). returns true if messages fit into transmit buffer, false otherwise. */ bool GCS_MAVLINK::send_gps_raw(AP_GPS &gps) { if (HAVE_PAYLOAD_SPACE(chan, GPS_RAW_INT)) { gps.send_mavlink_gps_raw(chan); } else { return false; } if (gps.highest_supported_status(0) > AP_GPS::GPS_OK_FIX_3D) { if (HAVE_PAYLOAD_SPACE(chan, GPS_RTK)) { gps.send_mavlink_gps_rtk(chan); } } if (gps.num_sensors() > 1 && gps.status(1) > AP_GPS::NO_GPS) { if (HAVE_PAYLOAD_SPACE(chan, GPS2_RAW)) { gps.send_mavlink_gps2_raw(chan); } if (gps.highest_supported_status(1) > AP_GPS::GPS_OK_FIX_3D) { if (HAVE_PAYLOAD_SPACE(chan, GPS2_RTK)) { gps.send_mavlink_gps2_rtk(chan); } } } //TODO: Should check what else managed to get through... return true; } /* send the SYSTEM_TIME message */ void GCS_MAVLINK::send_system_time(AP_GPS &gps) { mavlink_msg_system_time_send( chan, gps.time_epoch_usec(), AP_HAL::millis()); } /* send RC_CHANNELS messages */ void GCS_MAVLINK::send_radio_in(uint8_t receiver_rssi) { uint32_t now = AP_HAL::millis(); mavlink_status_t *status = mavlink_get_channel_status(chan); uint16_t values[18]; memset(values, 0, sizeof(values)); hal.rcin->read(values, 18); if (status && (status->flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1)) { // for mavlink1 send RC_CHANNELS_RAW, for compatibility with OSD implementations mavlink_msg_rc_channels_raw_send( chan, now, 0, values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], receiver_rssi); if (!HAVE_PAYLOAD_SPACE(chan, RC_CHANNELS)) { // can't fit RC_CHANNELS return; } } mavlink_msg_rc_channels_send( chan, now, hal.rcin->num_channels(), values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15], values[16], values[17], receiver_rssi); } void GCS_MAVLINK::send_raw_imu(const AP_InertialSensor &ins, const Compass &compass) { const Vector3f &accel = ins.get_accel(0); const Vector3f &gyro = ins.get_gyro(0); Vector3f mag; if (compass.get_count() >= 1) { mag = compass.get_field(0); } else { mag.zero(); } mavlink_msg_raw_imu_send( chan, AP_HAL::micros(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, mag.x, mag.y, mag.z); if (ins.get_gyro_count() <= 1 && ins.get_accel_count() <= 1 && compass.get_count() <= 1) { return; } if (!HAVE_PAYLOAD_SPACE(chan, SCALED_IMU2)) { return; } const Vector3f &accel2 = ins.get_accel(1); const Vector3f &gyro2 = ins.get_gyro(1); if (compass.get_count() >= 2) { mag = compass.get_field(1); } else { mag.zero(); } mavlink_msg_scaled_imu2_send( chan, AP_HAL::millis(), accel2.x * 1000.0f / GRAVITY_MSS, accel2.y * 1000.0f / GRAVITY_MSS, accel2.z * 1000.0f / GRAVITY_MSS, gyro2.x * 1000.0f, gyro2.y * 1000.0f, gyro2.z * 1000.0f, mag.x, mag.y, mag.z); if (ins.get_gyro_count() <= 2 && ins.get_accel_count() <= 2 && compass.get_count() <= 2) { return; } if (!HAVE_PAYLOAD_SPACE(chan, SCALED_IMU3)) { return; } const Vector3f &accel3 = ins.get_accel(2); const Vector3f &gyro3 = ins.get_gyro(2); if (compass.get_count() >= 3) { mag = compass.get_field(2); } else { mag.zero(); } mavlink_msg_scaled_imu3_send( chan, AP_HAL::millis(), accel3.x * 1000.0f / GRAVITY_MSS, accel3.y * 1000.0f / GRAVITY_MSS, accel3.z * 1000.0f / GRAVITY_MSS, gyro3.x * 1000.0f, gyro3.y * 1000.0f, gyro3.z * 1000.0f, mag.x, mag.y, mag.z); } void GCS_MAVLINK::send_scaled_pressure(AP_Baro &barometer) { uint32_t now = AP_HAL::millis(); float pressure = barometer.get_pressure(0); mavlink_msg_scaled_pressure_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(0))*0.01f, // hectopascal barometer.get_temperature(0)*100); // 0.01 degrees C if (barometer.num_instances() > 1 && HAVE_PAYLOAD_SPACE(chan, SCALED_PRESSURE2)) { pressure = barometer.get_pressure(1); mavlink_msg_scaled_pressure2_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(1))*0.01f, // hectopascal barometer.get_temperature(1)*100); // 0.01 degrees C } if (barometer.num_instances() > 2 && HAVE_PAYLOAD_SPACE(chan, SCALED_PRESSURE3)) { pressure = barometer.get_pressure(2); mavlink_msg_scaled_pressure3_send( chan, now, pressure*0.01f, // hectopascal (pressure - barometer.get_ground_pressure(2))*0.01f, // hectopascal barometer.get_temperature(2)*100); // 0.01 degrees C } } void GCS_MAVLINK::send_sensor_offsets(const AP_InertialSensor &ins, const Compass &compass, AP_Baro &barometer) { // run this message at a much lower rate - otherwise it // pointlessly wastes quite a lot of bandwidth static uint8_t counter; if (counter++ < 10) { return; } counter = 0; const Vector3f &mag_offsets = compass.get_offsets(0); const Vector3f &accel_offsets = ins.get_accel_offsets(0); const Vector3f &gyro_offsets = ins.get_gyro_offsets(0); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } void GCS_MAVLINK::send_ahrs(AP_AHRS &ahrs) { const Vector3f &omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 0, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } /* send a statustext message to all active MAVLink connections */ void GCS_MAVLINK::send_statustext_all(MAV_SEVERITY severity, const char *fmt, ...) { char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1] {}; va_list arg_list; va_start(arg_list, fmt); hal.util->vsnprintf((char *)text, sizeof(text)-1, fmt, arg_list); va_end(arg_list); text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN] = 0; gcs().send_statustext(severity, mavlink_active | chan_is_streaming, text); } /* send a statustext message to specific MAVLink channel, zero indexed */ void GCS_MAVLINK::send_statustext_chan(MAV_SEVERITY severity, uint8_t dest_chan, const char *fmt, ...) { char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN] {}; va_list arg_list; va_start(arg_list, fmt); hal.util->vsnprintf((char *)text, sizeof(text), fmt, arg_list); va_end(arg_list); gcs().send_statustext(severity, (1<Log_Write_Message(text); } // add statustext message to FrSky lib queue if (frsky_telemetry_p != NULL) { frsky_telemetry_p->queue_message(severity, text); } // filter destination ports to only allow active ports. statustext_t statustext{}; statustext.bitmask = (GCS_MAVLINK::active_channel_mask() | GCS_MAVLINK::streaming_channel_mask() ) & dest_bitmask; if (!statustext.bitmask) { // nowhere to send return; } statustext.msg.severity = severity; strncpy(statustext.msg.text, text, sizeof(statustext.msg.text)); // The force push will ensure comm links do not block other comm links forever if they fail. // If we push to a full buffer then we overwrite the oldest entry, effectively removing the // block but not until the buffer fills up. _statustext_queue.push_force(statustext); // try and send immediately if possible service_statustext(); } /* send a statustext message to specific MAVLink connections in a bitmask */ void GCS::service_statustext(void) { // create bitmask of what mavlink ports we should send this text to. // note, if sending to all ports, we only need to store the bitmask for each and the string only once. // once we send over a link, clear the port but other busy ports bit may stay allowing for faster links // to clear the bit and send quickly but slower links to still store the string. Regardless of mixed // bitrates of ports, a maximum of _status_capacity strings can be buffered. Downside // is if you have a super slow link mixed with a faster port, if there are _status_capacity // strings in the slow queue then the next item can not be queued for the faster link if (_statustext_queue.empty()) { // nothing to do return; } for (uint8_t idx=0; idx<_status_capacity; ) { statustext_t *statustext = _statustext_queue[idx]; if (statustext == nullptr) { break; } // try and send to all active mavlink ports listed in the statustext.bitmask for (uint8_t i=0; ibitmask & chan_bit) { // something is queued on a port and that's the port index we're looped at mavlink_channel_t chan_index = (mavlink_channel_t)(MAVLINK_COMM_0+i); if (HAVE_PAYLOAD_SPACE(chan_index, STATUSTEXT)) { // we have space so send then clear that channel bit on the mask mavlink_msg_statustext_send(chan_index, statustext->msg.severity, statustext->msg.text); statustext->bitmask &= ~chan_bit; } } } if (statustext->bitmask == 0) { _statustext_queue.remove(idx); } else { // move to next index idx++; } } } // report battery2 state void GCS_MAVLINK::send_battery2(const AP_BattMonitor &battery) { if (battery.num_instances() > 1) { int16_t current; if (battery.has_current(1)) { current = battery.current_amps(1) * 100; // 10*mA } else { current = -1; } mavlink_msg_battery2_send(chan, battery.voltage(1)*1000, current); } } /* handle a SET_MODE MAVLink message */ void GCS_MAVLINK::handle_set_mode(mavlink_message_t* msg, set_mode_fn set_mode) { uint8_t result = MAV_RESULT_FAILED; mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(msg, &packet); // only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes if (packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) { if (set_mode(packet.custom_mode)) { result = MAV_RESULT_ACCEPTED; } } else if (packet.base_mode == MAV_MODE_FLAG_DECODE_POSITION_SAFETY) { // set the safety switch position. Must be in a command by itself if (packet.custom_mode == 0) { // turn safety off (pwm outputs flow to the motors) hal.rcout->force_safety_off(); result = MAV_RESULT_ACCEPTED; } else if (packet.custom_mode == 1) { // turn safety on (no pwm outputs to the motors) if (hal.rcout->force_safety_on()) { result = MAV_RESULT_ACCEPTED; } } } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, result); } #if AP_AHRS_NAVEKF_AVAILABLE /* send OPTICAL_FLOW message */ void GCS_MAVLINK::send_opticalflow(AP_AHRS_NavEKF &ahrs, const OpticalFlow &optflow) { // exit immediately if no optical flow sensor or not healthy if (!optflow.healthy()) { return; } // get rates from sensor const Vector2f &flowRate = optflow.flowRate(); const Vector2f &bodyRate = optflow.bodyRate(); float hagl = 0; if (ahrs.have_inertial_nav()) { ahrs.get_hagl(hagl); } // populate and send message mavlink_msg_optical_flow_send( chan, AP_HAL::millis(), 0, // sensor id is zero flowRate.x, flowRate.y, bodyRate.x, bodyRate.y, optflow.quality(), hagl, // ground distance (in meters) set to zero flowRate.x, flowRate.y); } #endif /* send AUTOPILOT_VERSION packet */ void GCS_MAVLINK::send_autopilot_version(uint8_t major_version, uint8_t minor_version, uint8_t patch_version, uint8_t version_type) const { uint32_t flight_sw_version = 0; uint32_t middleware_sw_version = 0; uint32_t os_sw_version = 0; uint32_t board_version = 0; uint8_t flight_custom_version[8]; uint8_t middleware_custom_version[8]; uint8_t os_custom_version[8]; uint16_t vendor_id = 0; uint16_t product_id = 0; uint64_t uid = 0; flight_sw_version = major_version << (8*3) | \ minor_version << (8*2) | \ patch_version << (8*1) | \ version_type << (8*0); #if defined(GIT_VERSION) strncpy((char *)flight_custom_version, GIT_VERSION, 8); #else memset(middleware_custom_version,0,8); #endif #if defined(PX4_GIT_VERSION) strncpy((char *)middleware_custom_version, PX4_GIT_VERSION, 8); #else memset(middleware_custom_version,0,8); #endif #if defined(NUTTX_GIT_VERSION) strncpy((char *)os_custom_version, NUTTX_GIT_VERSION, 8); #else memset(os_custom_version,0,8); #endif mavlink_msg_autopilot_version_send( chan, hal.util->get_capabilities(), flight_sw_version, middleware_sw_version, os_sw_version, board_version, flight_custom_version, middleware_custom_version, os_custom_version, vendor_id, product_id, uid ); } /* send LOCAL_POSITION_NED message */ void GCS_MAVLINK::send_local_position(const AP_AHRS &ahrs) const { Vector3f local_position, velocity; if (!ahrs.get_relative_position_NED_home(local_position) || !ahrs.get_velocity_NED(velocity)) { // we don't know the position and velocity return; } mavlink_msg_local_position_ned_send( chan, AP_HAL::millis(), local_position.x, local_position.y, local_position.z, velocity.x, velocity.y, velocity.z); } /* send VIBRATION message */ void GCS_MAVLINK::send_vibration(const AP_InertialSensor &ins) const { Vector3f vibration = ins.get_vibration_levels(); mavlink_msg_vibration_send( chan, AP_HAL::micros64(), vibration.x, vibration.y, vibration.z, ins.get_accel_clip_count(0), ins.get_accel_clip_count(1), ins.get_accel_clip_count(2)); } void GCS_MAVLINK::send_home(const Location &home) const { if (HAVE_PAYLOAD_SPACE(chan, HOME_POSITION)) { const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; mavlink_msg_home_position_send( chan, home.lat, home.lng, home.alt * 10, 0.0f, 0.0f, 0.0f, q, 0.0f, 0.0f, 0.0f); } } void GCS_MAVLINK::send_home_all(const Location &home) { const float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; for (uint8_t i=0; i> 10; if (tnow > telem_delay()) { return false; } if (_chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } /* send SERVO_OUTPUT_RAW */ void GCS_MAVLINK::send_servo_output_raw(bool hil) { uint16_t values[16] {}; if (hil) { for (uint8_t i=0; i<16; i++) { values[i] = SRV_Channels::srv_channel(i)->get_output_pwm(); } } else { hal.rcout->read(values, 16); } for (uint8_t i=0; i<16; i++) { if (values[i] == 65535) { values[i] = 0; } } mavlink_msg_servo_output_raw_send( chan, AP_HAL::micros(), 0, // port values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8], values[9], values[10], values[11], values[12], values[13], values[14], values[15]); } void GCS_MAVLINK::send_collision_all(const AP_Avoidance::Obstacle &threat, MAV_COLLISION_ACTION behaviour) { for (uint8_t i=0; i= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_COLLISION) { mavlink_msg_collision_send( chan, MAV_COLLISION_SRC_ADSB, threat.src_id, behaviour, threat.threat_level, threat.time_to_closest_approach, threat.closest_approach_z, threat.closest_approach_xy ); } } } } void GCS_MAVLINK::send_accelcal_vehicle_position(uint32_t position) { if (HAVE_PAYLOAD_SPACE(chan, COMMAND_LONG)) { mavlink_msg_command_long_send( chan, 0, 0, MAV_CMD_ACCELCAL_VEHICLE_POS, 0, (float) position, 0, 0, 0, 0, 0, 0); } } /* handle a MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN command Optionally disable PX4IO overrides. This is done for quadplanes to prevent the mixer running while rebooting which can start the VTOL motors. That can be dangerous when a preflight reboot is done with the pilot close to the aircraft and can also damage the aircraft */ uint8_t GCS_MAVLINK::handle_preflight_reboot(const mavlink_command_long_t &packet, bool disable_overrides) { if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) { if (disable_overrides) { #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN // disable overrides while rebooting int px4io_fd = open("/dev/px4io", 0); if (px4io_fd >= 0) { // disable OVERRIDES so we don't run the mixer while // rebooting if (ioctl(px4io_fd, PWM_SERVO_SET_OVERRIDE_OK, 0) != 0) { hal.console->printf("SET_OVERRIDE_OK failed\n"); } if (ioctl(px4io_fd, PWM_SERVO_SET_OVERRIDE_IMMEDIATE, 0) != 0) { hal.console->printf("SET_OVERRIDE_IMMEDIATE failed\n"); } close(px4io_fd); } #endif } // force safety on hal.rcout->force_safety_on(); hal.rcout->force_safety_no_wait(); hal.scheduler->delay(200); // when packet.param1 == 3 we reboot to hold in bootloader bool hold_in_bootloader = is_equal(packet.param1,3.0f); hal.scheduler->reboot(hold_in_bootloader); return MAV_RESULT_ACCEPTED; } return MAV_RESULT_UNSUPPORTED; } /* handle a R/C bind request (for spektrum) */ uint8_t GCS_MAVLINK::handle_rc_bind(const mavlink_command_long_t &packet) { // initiate bind procedure. We accept the DSM type from either // param1 or param2 due to a past mixup with what parameter is the // right one if (!hal.rcin->rc_bind(packet.param2>0?packet.param2:packet.param1)) { return MAV_RESULT_FAILED; } return MAV_RESULT_ACCEPTED; } /* return a timesync request Sends back ts1 as received, and tc1 is the local timestamp in usec */ void GCS_MAVLINK::handle_timesync(mavlink_message_t *msg) { // decode incoming timesync message mavlink_timesync_t tsync; mavlink_msg_timesync_decode(msg, &tsync); // ignore messages in which tc1 field (timestamp 1) has already been filled in if (tsync.tc1 != 0) { return; } // create new timesync struct with tc1 field as system time in nanoseconds mavlink_timesync_t rsync; rsync.tc1 = AP_HAL::micros64() * 1000; rsync.ts1 = tsync.ts1; // respond with a timesync message mavlink_msg_timesync_send( chan, rsync.tc1, rsync.ts1 ); } /* handle messages which don't require vehicle specific data */ void GCS_MAVLINK::handle_common_message(mavlink_message_t *msg) { switch (msg->msgid) { case MAVLINK_MSG_ID_SETUP_SIGNING: handle_setup_signing(msg); break; case MAVLINK_MSG_ID_PARAM_REQUEST_READ: handle_param_request_read(msg); break; case MAVLINK_MSG_ID_DEVICE_OP_READ: handle_device_op_read(msg); break; case MAVLINK_MSG_ID_DEVICE_OP_WRITE: handle_device_op_write(msg); break; case MAVLINK_MSG_ID_TIMESYNC: handle_timesync(msg); break; } } GCS &gcs() { return *GCS::instance(); }