// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control #define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS) // forward declarations to make compiler happy static bool do_guided(const AP_Mission::Mission_Command& cmd); // use this to prevent recursion during sensor init static bool in_mavlink_delay; // true when we have received at least 1 MAVLink packet static bool mavlink_active; // true if we are out of time in our event timeslice static bool gcs_out_of_time; // check if a message will fit in the payload space available #define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_ ## id ## _LEN) return false // prototype this for use inside the GCS class static void gcs_send_text_fmt(const prog_char_t *fmt, ...); static void gcs_send_heartbeat(void) { gcs_send_message(MSG_HEARTBEAT); } static void gcs_send_deferred(void) { gcs_send_message(MSG_RETRY_DEFERRED); } /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ static NOINLINE void send_heartbeat(mavlink_channel_t chan) { uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; uint8_t system_status = ap.land_complete ? MAV_STATE_STANDBY : MAV_STATE_ACTIVE; uint32_t custom_mode = control_mode; // set system as critical if any failsafe have triggered if (failsafe.radio || failsafe.battery || failsafe.gps || failsafe.gcs) { system_status = MAV_STATE_CRITICAL; } // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; switch (control_mode) { case AUTO: case RTL: case LOITER: case GUIDED: case CIRCLE: base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; #if HIL_MODE != HIL_MODE_DISABLED base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (motors.armed()) { base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; mavlink_msg_heartbeat_send( chan, #if (FRAME_CONFIG == QUAD_FRAME) MAV_TYPE_QUADROTOR, #elif (FRAME_CONFIG == TRI_FRAME) MAV_TYPE_TRICOPTER, #elif (FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME) MAV_TYPE_HEXAROTOR, #elif (FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME) MAV_TYPE_OCTOROTOR, #elif (FRAME_CONFIG == HELI_FRAME) MAV_TYPE_HELICOPTER, #elif (FRAME_CONFIG == SINGLE_FRAME) //because mavlink did not define a singlecopter, we use a rocket MAV_TYPE_ROCKET, #elif (FRAME_CONFIG == COAX_FRAME) //because mavlink did not define a singlecopter, we use a rocket MAV_TYPE_ROCKET, #else #error Unrecognised frame type #endif MAV_AUTOPILOT_ARDUPILOTMEGA, base_mode, custom_mode, system_status); } static NOINLINE void send_attitude(mavlink_channel_t chan) { const Vector3f &gyro = ins.get_gyro(); mavlink_msg_attitude_send( chan, millis(), ahrs.roll, ahrs.pitch, ahrs.yaw, gyro.x, gyro.y, gyro.z); } #if AC_FENCE == ENABLED static NOINLINE void send_limits_status(mavlink_channel_t chan) { fence_send_mavlink_status(chan); } #endif static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t packet_drops) { uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (g_gps != NULL && g_gps->status() > GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (g.optflow_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif if (ap.rc_receiver_present) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } // all present sensors enabled by default except altitude and position control which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL); switch (control_mode) { case ALT_HOLD: case AUTO: case GUIDED: case LOITER: case RTL: case CIRCLE: case LAND: case OF_LOITER: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; break; case SPORT: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; break; } // default to all healthy except compass, gps and receiver which we set individually control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS & ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER); if (g.compass_enabled && compass.healthy() && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (g_gps != NULL && g_gps->status() > GPS::NO_GPS && (!gps_glitch.glitching()||ap.usb_connected)) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } if (ap.rc_receiver_present && !failsafe.radio) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } if (!ins.healthy()) { control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average(10000) * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } static void NOINLINE send_location(mavlink_channel_t chan) { uint32_t fix_time; // if we have a GPS fix, take the time as the last fix time. That // allows us to correctly calculate velocities and extrapolate // positions. // If we don't have a GPS fix then we are dead reckoning, and will // use the current boot time as the fix time. if (g_gps->status() >= GPS::GPS_OK_FIX_2D) { fix_time = g_gps->last_fix_time; } else { fix_time = millis(); } mavlink_msg_global_position_int_send( chan, fix_time, current_loc.lat, // in 1E7 degrees current_loc.lng, // in 1E7 degrees g_gps->altitude_cm * 10, // millimeters above sea level (current_loc.alt - home.alt) * 10, // millimeters above ground g_gps->velocity_north() * 100, // X speed cm/s (+ve North) g_gps->velocity_east() * 100, // Y speed cm/s (+ve East) g_gps->velocity_down() * -100, // Z speed cm/s (+ve up) ahrs.yaw_sensor); // compass heading in 1/100 degree } static void NOINLINE send_nav_controller_output(mavlink_channel_t chan) { Vector3f targets; get_angle_targets_for_reporting(targets); mavlink_msg_nav_controller_output_send( chan, targets.x / 1.0e2f, targets.y / 1.0e2f, targets.z / 1.0e2f, wp_bearing / 1.0e2f, wp_distance / 1.0e2f, pos_control.get_alt_error() / 1.0e2f, 0, 0); } static void NOINLINE send_ahrs(mavlink_channel_t chan) { const Vector3f &omega_I = ahrs.get_gyro_drift(); mavlink_msg_ahrs_send( chan, omega_I.x, omega_I.y, omega_I.z, 1, 0, ahrs.get_error_rp(), ahrs.get_error_yaw()); } // report simulator state static void NOINLINE send_simstate(mavlink_channel_t chan) { #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL sitl.simstate_send(chan); #endif } static void NOINLINE send_hwstatus(mavlink_channel_t chan) { mavlink_msg_hwstatus_send( chan, hal.analogin->board_voltage()*1000, hal.i2c->lockup_count()); } static void NOINLINE send_gps_raw(mavlink_channel_t chan) { mavlink_msg_gps_raw_int_send( chan, g_gps->last_fix_time*(uint64_t)1000, g_gps->status(), g_gps->latitude, // in 1E7 degrees g_gps->longitude, // in 1E7 degrees g_gps->altitude_cm * 10, // in mm g_gps->hdop, 65535, g_gps->ground_speed_cm, // cm/s g_gps->ground_course_cd, // 1/100 degrees, g_gps->num_sats); #if GPS2_ENABLE if (g_gps2 != NULL && g_gps2->status() != GPS::NO_GPS) { int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES; if (payload_space >= MAVLINK_MSG_ID_GPS2_RAW_LEN) { mavlink_msg_gps2_raw_send( chan, g_gps2->last_fix_time*(uint64_t)1000, g_gps2->status(), g_gps2->latitude, // in 1E7 degrees g_gps2->longitude, // in 1E7 degrees g_gps2->altitude_cm * 10, // in mm g_gps2->hdop, 65535, g_gps2->ground_speed_cm, // cm/s g_gps2->ground_course_cd, // 1/100 degrees, g_gps2->num_sats, 0, 0); } } #endif } static void NOINLINE send_system_time(mavlink_channel_t chan) { mavlink_msg_system_time_send( chan, g_gps->time_epoch_usec(), hal.scheduler->millis()); } #if HIL_MODE != HIL_MODE_DISABLED static void NOINLINE send_servo_out(mavlink_channel_t chan) { // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with HIL maintainers #if FRAME_CONFIG == HELI_FRAME mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out, 0, 0, 0, 0, receiver_rssi); #else #if X_PLANE == ENABLED /* update by JLN for X-Plane HIL */ if(motors.armed() && ap.auto_armed) { mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, 10000 * g.rc_3.norm_output(), g.rc_4.servo_out, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); }else{ mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 0, 0, -10000, 0, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); } #else mavlink_msg_rc_channels_scaled_send( chan, millis(), 0, // port 0 g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.radio_out, g.rc_4.servo_out, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), receiver_rssi); #endif #endif } #endif // HIL_MODE static void NOINLINE send_radio_in(mavlink_channel_t chan) { mavlink_msg_rc_channels_raw_send( chan, millis(), 0, // port g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in, receiver_rssi); } static void NOINLINE send_radio_out(mavlink_channel_t chan) { uint8_t i; uint16_t rcout[8]; hal.rcout->read(rcout,8); // clear out unreasonable values for (i=0; i<8; i++) { if (rcout[i] > 10000) { rcout[i] = 0; } } mavlink_msg_servo_output_raw_send( chan, micros(), 0, // port rcout[0], rcout[1], rcout[2], rcout[3], rcout[4], rcout[5], rcout[6], rcout[7]); } static void NOINLINE send_vfr_hud(mavlink_channel_t chan) { mavlink_msg_vfr_hud_send( chan, (float)g_gps->ground_speed_cm / 100.0f, (float)g_gps->ground_speed_cm / 100.0f, (ahrs.yaw_sensor / 100) % 360, g.rc_3.servo_out/10, current_loc.alt / 100.0f, climb_rate / 100.0f); } static void NOINLINE send_raw_imu1(mavlink_channel_t chan) { const Vector3f &accel = ins.get_accel(); const Vector3f &gyro = ins.get_gyro(); const Vector3f &mag = compass.get_field(); mavlink_msg_raw_imu_send( chan, micros(), accel.x * 1000.0f / GRAVITY_MSS, accel.y * 1000.0f / GRAVITY_MSS, accel.z * 1000.0f / GRAVITY_MSS, gyro.x * 1000.0f, gyro.y * 1000.0f, gyro.z * 1000.0f, mag.x, mag.y, mag.z); if (ins.get_gyro_count() <= 1 && ins.get_accel_count() <= 1 && compass.get_count() <= 1) { return; } const Vector3f &accel2 = ins.get_accel(1); const Vector3f &gyro2 = ins.get_gyro(1); const Vector3f &mag2 = compass.get_field(1); mavlink_msg_scaled_imu2_send( chan, millis(), accel2.x * 1000.0f / GRAVITY_MSS, accel2.y * 1000.0f / GRAVITY_MSS, accel2.z * 1000.0f / GRAVITY_MSS, gyro2.x * 1000.0f, gyro2.y * 1000.0f, gyro2.z * 1000.0f, mag2.x, mag2.y, mag2.z); } static void NOINLINE send_raw_imu2(mavlink_channel_t chan) { mavlink_msg_scaled_pressure_send( chan, millis(), barometer.get_pressure()*0.01f, // hectopascal (barometer.get_pressure() - barometer.get_ground_pressure())*0.01f, // hectopascal (int16_t)(barometer.get_temperature()*100)); // 0.01 degrees C } static void NOINLINE send_raw_imu3(mavlink_channel_t chan) { const Vector3f &mag_offsets = compass.get_offsets(); const Vector3f &accel_offsets = ins.get_accel_offsets(); const Vector3f &gyro_offsets = ins.get_gyro_offsets(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.get_pressure(), barometer.get_temperature()*100, gyro_offsets.x, gyro_offsets.y, gyro_offsets.z, accel_offsets.x, accel_offsets.y, accel_offsets.z); } static void NOINLINE send_current_waypoint(mavlink_channel_t chan) { uint16_t current_cmd_index; if (mission.state() == AP_Mission::MISSION_RUNNING) { current_cmd_index = mission.get_current_nav_cmd().index; }else{ current_cmd_index = AP_MISSION_CMD_INDEX_NONE; } mavlink_msg_mission_current_send(chan, current_cmd_index); } static void NOINLINE send_statustext(mavlink_channel_t chan) { mavlink_statustext_t *s = &gcs[chan-MAVLINK_COMM_0].pending_status; mavlink_msg_statustext_send( chan, s->severity, s->text); } // are we still delaying telemetry to try to avoid Xbee bricking? static bool telemetry_delayed(mavlink_channel_t chan) { uint32_t tnow = millis() >> 10; if (tnow > (uint32_t)g.telem_delay) { return false; } if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) { // this is USB telemetry, so won't be an Xbee return false; } // we're either on the 2nd UART, or no USB cable is connected // we need to delay telemetry by the TELEM_DELAY time return true; } // try to send a message, return false if it won't fit in the serial tx buffer static bool mavlink_try_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops) { int16_t payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES; if (telemetry_delayed(chan)) { return false; } #if HIL_MODE != HIL_MODE_SENSORS // if we don't have at least 250 micros remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications if (scheduler.time_available_usec() < 250 && motors.armed()) { gcs_out_of_time = true; return false; } #endif switch(id) { case MSG_HEARTBEAT: CHECK_PAYLOAD_SIZE(HEARTBEAT); gcs[chan-MAVLINK_COMM_0].last_heartbeat_time = hal.scheduler->millis(); send_heartbeat(chan); break; case MSG_EXTENDED_STATUS1: CHECK_PAYLOAD_SIZE(SYS_STATUS); send_extended_status1(chan, packet_drops); CHECK_PAYLOAD_SIZE(POWER_STATUS); gcs[chan-MAVLINK_COMM_0].send_power_status(); break; case MSG_EXTENDED_STATUS2: CHECK_PAYLOAD_SIZE(MEMINFO); gcs[chan-MAVLINK_COMM_0].send_meminfo(); break; case MSG_ATTITUDE: CHECK_PAYLOAD_SIZE(ATTITUDE); send_attitude(chan); break; case MSG_LOCATION: CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); send_location(chan); break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); send_nav_controller_output(chan); break; case MSG_GPS_RAW: CHECK_PAYLOAD_SIZE(GPS_RAW_INT); send_gps_raw(chan); break; case MSG_SYSTEM_TIME: CHECK_PAYLOAD_SIZE(SYSTEM_TIME); send_system_time(chan); break; case MSG_SERVO_OUT: #if HIL_MODE != HIL_MODE_DISABLED CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); send_servo_out(chan); #endif break; case MSG_RADIO_IN: CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); send_radio_in(chan); break; case MSG_RADIO_OUT: CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); send_radio_out(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); send_vfr_hud(chan); break; case MSG_RAW_IMU1: CHECK_PAYLOAD_SIZE(RAW_IMU); send_raw_imu1(chan); break; case MSG_RAW_IMU2: CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); send_raw_imu2(chan); break; case MSG_RAW_IMU3: CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); send_raw_imu3(chan); break; case MSG_CURRENT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_CURRENT); send_current_waypoint(chan); break; case MSG_NEXT_PARAM: CHECK_PAYLOAD_SIZE(PARAM_VALUE); gcs[chan-MAVLINK_COMM_0].queued_param_send(); break; case MSG_NEXT_WAYPOINT: CHECK_PAYLOAD_SIZE(MISSION_REQUEST); gcs[chan-MAVLINK_COMM_0].queued_waypoint_send(); break; case MSG_STATUSTEXT: CHECK_PAYLOAD_SIZE(STATUSTEXT); send_statustext(chan); break; #if AC_FENCE == ENABLED case MSG_LIMITS_STATUS: CHECK_PAYLOAD_SIZE(LIMITS_STATUS); send_limits_status(chan); break; #endif case MSG_AHRS: CHECK_PAYLOAD_SIZE(AHRS); send_ahrs(chan); break; case MSG_SIMSTATE: #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL CHECK_PAYLOAD_SIZE(SIMSTATE); send_simstate(chan); #endif #if AP_AHRS_NAVEKF_AVAILABLE CHECK_PAYLOAD_SIZE(AHRS2); gcs[chan-MAVLINK_COMM_0].send_ahrs2(ahrs); #endif break; case MSG_HWSTATUS: CHECK_PAYLOAD_SIZE(HWSTATUS); send_hwstatus(chan); break; case MSG_FENCE_STATUS: case MSG_WIND: case MSG_RANGEFINDER: // unused break; case MSG_RETRY_DEFERRED: break; // just here to prevent a warning } return true; } #define MAX_DEFERRED_MESSAGES MSG_RETRY_DEFERRED static struct mavlink_queue { enum ap_message deferred_messages[MAX_DEFERRED_MESSAGES]; uint8_t next_deferred_message; uint8_t num_deferred_messages; } mavlink_queue[MAVLINK_COMM_NUM_BUFFERS]; // send a message using mavlink static void mavlink_send_message(mavlink_channel_t chan, enum ap_message id, uint16_t packet_drops) { uint8_t i, nextid; struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan]; // see if we can send the deferred messages, if any while (q->num_deferred_messages != 0) { if (!mavlink_try_send_message(chan, q->deferred_messages[q->next_deferred_message], packet_drops)) { break; } q->next_deferred_message++; if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) { q->next_deferred_message = 0; } q->num_deferred_messages--; } if (id == MSG_RETRY_DEFERRED) { return; } // this message id might already be deferred for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) { if (q->deferred_messages[nextid] == id) { // its already deferred, discard return; } nextid++; if (nextid == MAX_DEFERRED_MESSAGES) { nextid = 0; } } if (q->num_deferred_messages != 0 || !mavlink_try_send_message(chan, id, packet_drops)) { // can't send it now, so defer it if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) { // the defer buffer is full, discard return; } nextid = q->next_deferred_message + q->num_deferred_messages; if (nextid >= MAX_DEFERRED_MESSAGES) { nextid -= MAX_DEFERRED_MESSAGES; } q->deferred_messages[nextid] = id; q->num_deferred_messages++; } } const AP_Param::GroupInfo GCS_MAVLINK::var_info[] PROGMEM = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Raw sensor stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Extended status stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: RC Channel stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Raw Control stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Position stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Extra data type 1 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Extra data type 2 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Extra data type 3 stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Parameter stream rate to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0), AP_GROUPEND }; void GCS_MAVLINK::update(void) { // receive new packets mavlink_message_t msg; mavlink_status_t status; status.packet_rx_drop_count = 0; // process received bytes uint16_t nbytes = comm_get_available(chan); for (uint16_t i=0; i waypoint_timelast_request + 500 + (stream_slowdown*20)) { waypoint_timelast_request = tnow; send_message(MSG_NEXT_WAYPOINT); } // stop waypoint receiving if timeout if ((tnow - waypoint_timelast_receive) > waypoint_receive_timeout) { waypoint_receiving = false; } } } // see if we should send a stream now. Called at 50Hz bool GCS_MAVLINK::stream_trigger(enum streams stream_num) { if (stream_num >= NUM_STREAMS) { return false; } float rate = (uint8_t)streamRates[stream_num].get(); // send at a much lower rate while handling waypoints and // parameter sends if ((stream_num != STREAM_PARAMS) && (waypoint_receiving || _queued_parameter != NULL)) { rate *= 0.25; } if (rate <= 0) { return false; } if (stream_ticks[stream_num] == 0) { // we're triggering now, setup the next trigger point if (rate > 50) { rate = 50; } stream_ticks[stream_num] = (50 / rate) + stream_slowdown; return true; } // count down at 50Hz stream_ticks[stream_num]--; return false; } void GCS_MAVLINK::data_stream_send(void) { if (waypoint_receiving) { // don't interfere with mission transfer return; } if (!in_mavlink_delay && !motors.armed()) { handle_log_send(DataFlash); } gcs_out_of_time = false; if (_queued_parameter != NULL) { if (streamRates[STREAM_PARAMS].get() <= 0) { streamRates[STREAM_PARAMS].set(10); } if (stream_trigger(STREAM_PARAMS)) { send_message(MSG_NEXT_PARAM); } // don't send anything else at the same time as parameters return; } if (gcs_out_of_time) return; if (in_mavlink_delay) { // don't send any other stream types while in the delay callback return; } if (stream_trigger(STREAM_RAW_SENSORS)) { send_message(MSG_RAW_IMU1); send_message(MSG_RAW_IMU2); send_message(MSG_RAW_IMU3); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTENDED_STATUS)) { send_message(MSG_EXTENDED_STATUS1); send_message(MSG_EXTENDED_STATUS2); send_message(MSG_CURRENT_WAYPOINT); send_message(MSG_GPS_RAW); send_message(MSG_NAV_CONTROLLER_OUTPUT); send_message(MSG_LIMITS_STATUS); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_POSITION)) { send_message(MSG_LOCATION); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RAW_CONTROLLER)) { send_message(MSG_SERVO_OUT); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_RC_CHANNELS)) { send_message(MSG_RADIO_OUT); send_message(MSG_RADIO_IN); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA1)) { send_message(MSG_ATTITUDE); send_message(MSG_SIMSTATE); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA2)) { send_message(MSG_VFR_HUD); } if (gcs_out_of_time) return; if (stream_trigger(STREAM_EXTRA3)) { send_message(MSG_AHRS); send_message(MSG_HWSTATUS); send_message(MSG_SYSTEM_TIME); } } void GCS_MAVLINK::send_message(enum ap_message id) { mavlink_send_message(chan,id, packet_drops); } void GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd) { do_guided(cmd); } void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // add home alt if needed if (cmd.content.location.options & LOCATION_MASK_OPTIONS_RELATIVE_ALT) { cmd.content.location.alt += home.alt; } // To-Do: update target altitude for loiter or waypoint controller depending upon nav mode // similar to how do_change_alt works wp_nav.set_desired_alt(cmd.content.location.alt); } void GCS_MAVLINK::handleMessage(mavlink_message_t* msg) { uint8_t result = MAV_RESULT_FAILED; // assume failure. Each messages id is responsible for return ACK or NAK if required switch (msg->msgid) { case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0 { // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if(msg->sysid != g.sysid_my_gcs) break; failsafe.last_heartbeat_ms = millis(); pmTest1++; break; } case MAVLINK_MSG_ID_SET_MODE: // MAV ID: 11 { // decode mavlink_set_mode_t packet; mavlink_msg_set_mode_decode(msg, &packet); // only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes if (packet.base_mode & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) { if (set_mode(packet.custom_mode)) { result = MAV_RESULT_ACCEPTED; } } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, MAVLINK_MSG_ID_SET_MODE, result); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_READ: // MAV ID: 20 { handle_param_request_read(msg); break; } case MAVLINK_MSG_ID_PARAM_REQUEST_LIST: // MAV ID: 21 { handle_param_request_list(msg); break; } case MAVLINK_MSG_ID_PARAM_SET: // 23 { handle_param_set(msg, &DataFlash); break; } case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38 { handle_mission_write_partial_list(mission, msg); break; } #ifdef MAVLINK_MSG_ID_SET_MAG_OFFSETS case MAVLINK_MSG_ID_SET_MAG_OFFSETS: { mavlink_set_mag_offsets_t packet; mavlink_msg_set_mag_offsets_decode(msg, &packet); // exit immediately if this command is not meant for this vehicle if (mavlink_check_target(packet.target_system,packet.target_component)) { break; } compass.set_offsets(Vector3f(packet.mag_ofs_x, packet.mag_ofs_y, packet.mag_ofs_z)); break; } #endif // GCS has sent us a command from GCS, store to EEPROM case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39 { handle_mission_item(msg, mission); break; } // read an individual command from EEPROM and send it to the GCS case MAVLINK_MSG_ID_MISSION_REQUEST: // MAV ID: 40 { handle_mission_request(mission, msg); break; } case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41 { handle_mission_set_current(mission, msg); break; } // GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43 { handle_mission_request_list(mission, msg); break; } // GCS provides the full number of commands it wishes to upload // individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44 { handle_mission_count(mission, msg); break; } case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45 { handle_mission_clear_all(mission, msg); break; } case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: // MAV ID: 66 { handle_request_data_stream(msg, false); break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: // MAV ID: 70 { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != g.sysid_my_gcs) break; // Only accept control from our gcs mavlink_rc_channels_override_t packet; int16_t v[8]; mavlink_msg_rc_channels_override_decode(msg, &packet); // exit immediately if this command is not meant for this vehicle if (mavlink_check_target(packet.target_system,packet.target_component)) { break; } v[0] = packet.chan1_raw; v[1] = packet.chan2_raw; v[2] = packet.chan3_raw; v[3] = packet.chan4_raw; v[4] = packet.chan5_raw; v[5] = packet.chan6_raw; v[6] = packet.chan7_raw; v[7] = packet.chan8_raw; hal.rcin->set_overrides(v, 8); // record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation failsafe.rc_override_active = true; // a RC override message is consiered to be a 'heartbeat' from the ground station for failsafe purposes failsafe.last_heartbeat_ms = millis(); break; } // Pre-Flight calibration requests case MAVLINK_MSG_ID_COMMAND_LONG: // MAV ID: 76 { // decode packet mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); // exit immediately if this command is not meant for this vehicle if (mavlink_check_target(packet.target_system, packet.target_component)) { break; } switch(packet.command) { case MAV_CMD_NAV_LOITER_UNLIM: if (set_mode(LOITER)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: if (set_mode(RTL)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_LAND: if (set_mode(LAND)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_MISSION_START: if (set_mode(AUTO)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_CALIBRATION: if (packet.param1 == 1 || packet.param2 == 1) { ins.init_accel(); ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim result = MAV_RESULT_ACCEPTED; } if (packet.param3 == 1) { init_barometer(false); // fast barometer calibration result = MAV_RESULT_ACCEPTED; } if (packet.param4 == 1) { trim_radio(); result = MAV_RESULT_ACCEPTED; } if (packet.param5 == 1) { float trim_roll, trim_pitch; // this blocks AP_InertialSensor_UserInteract_MAVLink interact(chan); if(ins.calibrate_accel(&interact, trim_roll, trim_pitch)) { // reset ahrs's trim to suggested values from calibration routine ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } result = MAV_RESULT_ACCEPTED; } if (packet.param6 == 1) { // compassmot calibration result = mavlink_compassmot(chan); } break; case MAV_CMD_COMPONENT_ARM_DISARM: if (packet.target_component == MAV_COMP_ID_SYSTEM_CONTROL) { if (packet.param1 == 1.0f) { // run pre_arm_checks and arm_checks and display failures pre_arm_checks(true); if(ap.pre_arm_check && arm_checks(true)) { init_arm_motors(); result = MAV_RESULT_ACCEPTED; }else{ result = MAV_RESULT_UNSUPPORTED; } } else if (packet.param1 == 0.0f) { init_disarm_motors(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_UNSUPPORTED; } } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_DO_SET_SERVO: if (ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_SERVO: if (ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_SET_RELAY: if (ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_REPEAT_RELAY: if (ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (packet.param1 == 1 || packet.param1 == 3) { // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(packet.param1 == 3); result = MAV_RESULT_ACCEPTED; } break; default: result = MAV_RESULT_UNSUPPORTED; break; } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); break; } case MAVLINK_MSG_ID_COMMAND_ACK: // MAV ID: 77 { command_ack_counter++; break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90 { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); float vel = pythagorous2(packet.vx, packet.vy); float cog = wrap_360_cd(ToDeg(atan2f(packet.vx, packet.vy)) * 100); // if we are erasing the dataflash this object doesnt exist yet. as its called from delay_cb if (g_gps == NULL) break; // set gps hil sensor g_gps->setHIL(GPS::FIX_3D, packet.time_usec/1000, packet.lat*1.0e-7, packet.lon*1.0e-7, packet.alt*1.0e-3, vel*1.0e-2, cog*1.0e-2, 0, 10); if (!ap.home_is_set) { init_home(); } // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0); accels.y = packet.yacc * (GRAVITY_MSS/1000.0); accels.z = packet.zacc * (GRAVITY_MSS/1000.0); ins.set_gyro(0, gyros); ins.set_accel(0, accels); barometer.setHIL(packet.alt*0.001f); compass.setHIL(packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109 { handle_radio_status(msg); break; } case MAVLINK_MSG_ID_LOG_REQUEST_LIST ... MAVLINK_MSG_ID_LOG_REQUEST_END: // MAV ID: 117 ... 122 if (!in_mavlink_delay && !motors.armed()) { handle_log_message(msg, DataFlash); } break; #if CAMERA == ENABLED case MAVLINK_MSG_ID_DIGICAM_CONFIGURE: // MAV ID: 202 camera.configure_msg(msg); break; case MAVLINK_MSG_ID_DIGICAM_CONTROL: camera.control_msg(msg); break; #endif // CAMERA == ENABLED #if MOUNT == ENABLED case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // MAV ID: 204 camera_mount.configure_msg(msg); break; case MAVLINK_MSG_ID_MOUNT_CONTROL: camera_mount.control_msg(msg); break; case MAVLINK_MSG_ID_MOUNT_STATUS: camera_mount.status_msg(msg); break; #endif // MOUNT == ENABLED } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ static void mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs[0].initialised || in_mavlink_delay) return; in_mavlink_delay = true; uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_heartbeat(); gcs_send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_check_input(); gcs_data_stream_send(); gcs_send_deferred(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs_send_text_P(SEVERITY_LOW, PSTR("Initialising APM...")); } check_usb_mux(); in_mavlink_delay = false; } /* * send a message on both GCS links */ static void gcs_send_message(enum ap_message id) { for (uint8_t i=0; ivsnprintf_P((char *)gcs[0].pending_status.text, sizeof(gcs[0].pending_status.text), fmt, arg_list); va_end(arg_list); mavlink_send_message(MAVLINK_COMM_0, MSG_STATUSTEXT, 0); for (uint8_t i=1; i