#include "Plane.h" //Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- /* allow for runtime change of control channel ordering */ void Plane::set_control_channels(void) { if (g.rudder_only) { // in rudder only mode the roll and rudder channels are the // same. channel_roll = RC_Channels::rc_channel(rcmap.yaw()-1); } else { channel_roll = RC_Channels::rc_channel(rcmap.roll()-1); } channel_pitch = RC_Channels::rc_channel(rcmap.pitch()-1); channel_throttle = RC_Channels::rc_channel(rcmap.throttle()-1); channel_rudder = RC_Channels::rc_channel(rcmap.yaw()-1); // set rc channel ranges channel_roll->set_angle(SERVO_MAX); channel_pitch->set_angle(SERVO_MAX); channel_rudder->set_angle(SERVO_MAX); if (!have_reverse_thrust()) { // normal operation channel_throttle->set_range(100); } else { // reverse thrust if (have_reverse_throttle_rc_option) { // when we have a reverse throttle RC option setup we use throttle // as a range, and rely on the RC switch to get reverse thrust channel_throttle->set_range(100); } else { channel_throttle->set_angle(100); } SRV_Channels::set_angle(SRV_Channel::k_throttle, 100); SRV_Channels::set_angle(SRV_Channel::k_throttleLeft, 100); SRV_Channels::set_angle(SRV_Channel::k_throttleRight, 100); } // update flap and airbrake channel assignment channel_flap = rc().find_channel_for_option(RC_Channel::AUX_FUNC::FLAP); channel_airbrake = rc().find_channel_for_option(RC_Channel::AUX_FUNC::AIRBRAKE); #if HAL_QUADPLANE_ENABLED // update manual forward throttle channel assignment quadplane.rc_fwd_thr_ch = rc().find_channel_for_option(RC_Channel::AUX_FUNC::FWD_THR); #endif bool set_throttle_esc_scaling = true; #if HAL_QUADPLANE_ENABLED set_throttle_esc_scaling = !quadplane.enable; #endif if (set_throttle_esc_scaling) { // setup correct scaling for ESCs like the UAVCAN ESCs which // take a proportion of speed. For quadplanes we use AP_Motors // scaling g2.servo_channels.set_esc_scaling_for(SRV_Channel::k_throttle); } } /* initialise RC input channels */ void Plane::init_rc_in() { // set rc dead zones channel_roll->set_default_dead_zone(30); channel_pitch->set_default_dead_zone(30); channel_rudder->set_default_dead_zone(30); channel_throttle->set_default_dead_zone(30); } /* initialise RC output for main channels. This is done early to allow for BRD_SAFETYENABLE=0 and early servo control */ void Plane::init_rc_out_main() { /* change throttle trim to minimum throttle. This prevents a configuration error where the user sets CH3_TRIM incorrectly and the motor may start on power up */ if (!have_reverse_thrust()) { SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttle); } SRV_Channels::set_failsafe_limit(SRV_Channel::k_aileron, SRV_Channel::Limit::TRIM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_elevator, SRV_Channel::Limit::TRIM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttle, SRV_Channel::Limit::TRIM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_rudder, SRV_Channel::Limit::TRIM); } /* initialise RC output channels for aux channels */ void Plane::init_rc_out_aux() { SRV_Channels::enable_aux_servos(); servos_output(); // setup PWM values to send if the FMU firmware dies // allows any VTOL motors to shut off SRV_Channels::setup_failsafe_trim_all_non_motors(); } /* check for pilot input on rudder stick for arming/disarming */ void Plane::rudder_arm_disarm_check() { if (!arming.is_armed()) { // when not armed, full right rudder starts arming counter if (channel_rudder->get_control_in() > 4000) { uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { //time to arm! arming.arm(AP_Arming::Method::RUDDER); rudder_arm_timer = 0; } } else { // not at full right rudder rudder_arm_timer = 0; } } else { // full left rudder starts disarming counter if (channel_rudder->get_control_in() < -4000) { uint32_t now = millis(); if (rudder_arm_timer == 0 || now - rudder_arm_timer < 3000) { if (rudder_arm_timer == 0) { rudder_arm_timer = now; } } else { //time to disarm! arming.disarm(AP_Arming::Method::RUDDER); rudder_arm_timer = 0; } } else { // not at full left rudder rudder_arm_timer = 0; } } } void Plane::read_radio() { if (!rc().read_input()) { control_failsafe(); return; } if (!failsafe.rc_failsafe) { failsafe.AFS_last_valid_rc_ms = millis(); } if (rc_throttle_value_ok()) { failsafe.last_valid_rc_ms = millis(); } control_failsafe(); #if AC_FENCE == ENABLED const bool stickmixing = fence_stickmixing(); #else const bool stickmixing = true; #endif airspeed_nudge_cm = 0; throttle_nudge = 0; if (g.throttle_nudge && channel_throttle->get_control_in() > 50 && stickmixing) { float nudge = (channel_throttle->get_control_in() - 50) * 0.02f; if (ahrs.airspeed_sensor_enabled()) { airspeed_nudge_cm = (aparm.airspeed_max * 100 - aparm.airspeed_cruise_cm) * nudge; } else { throttle_nudge = (aparm.throttle_max - aparm.throttle_cruise) * nudge; } } rudder_arm_disarm_check(); #if HAL_QUADPLANE_ENABLED // potentially swap inputs for tailsitters quadplane.tailsitter.check_input(); #endif // check for transmitter tuning changes tuning.check_input(control_mode->mode_number()); } int16_t Plane::rudder_input(void) { if (g.rudder_only != 0) { // in rudder only mode we discard rudder input and get target // attitude from the roll channel. return 0; } if ((g2.flight_options & FlightOptions::DIRECT_RUDDER_ONLY) && !(control_mode == &mode_manual || control_mode == &mode_stabilize || control_mode == &mode_acro)) { // the user does not want any input except in these modes return 0; } if (stick_mixing_enabled()) { return channel_rudder->get_control_in(); } return 0; } void Plane::control_failsafe() { if (rc_failsafe_active()) { // we do not have valid RC input. Set all primary channel // control inputs to the trim value and throttle to min channel_roll->set_radio_in(channel_roll->get_radio_trim()); channel_pitch->set_radio_in(channel_pitch->get_radio_trim()); channel_rudder->set_radio_in(channel_rudder->get_radio_trim()); // note that we don't set channel_throttle->radio_in to radio_trim, // as that would cause throttle failsafe to not activate channel_roll->set_control_in(0); channel_pitch->set_control_in(0); channel_rudder->set_control_in(0); airspeed_nudge_cm = 0; throttle_nudge = 0; switch (control_mode->mode_number()) { #if HAL_QUADPLANE_ENABLED case Mode::Number::QSTABILIZE: case Mode::Number::QHOVER: case Mode::Number::QLOITER: case Mode::Number::QLAND: // throttle is ignored, but reset anyways case Mode::Number::QRTL: // throttle is ignored, but reset anyways case Mode::Number::QACRO: #if QAUTOTUNE_ENABLED case Mode::Number::QAUTOTUNE: #endif if (quadplane.available() && quadplane.motors->get_desired_spool_state() > AP_Motors::DesiredSpoolState::GROUND_IDLE) { // set half throttle to avoid descending at maximum rate, still has a slight descent due to throttle deadzone channel_throttle->set_control_in(channel_throttle->get_range() / 2); break; } FALLTHROUGH; #endif default: channel_throttle->set_control_in(0); break; } } if (ThrFailsafe(g.throttle_fs_enabled.get()) != ThrFailsafe::Enabled) { return; } if (rc_failsafe_active()) { // we detect a failsafe from radio // throttle has dropped below the mark failsafe.throttle_counter++; if (failsafe.throttle_counter == 10) { gcs().send_text(MAV_SEVERITY_WARNING, "Throttle failsafe on"); failsafe.rc_failsafe = true; AP_Notify::flags.failsafe_radio = true; } if (failsafe.throttle_counter > 10) { failsafe.throttle_counter = 10; } } else if(failsafe.throttle_counter > 0) { // we are no longer in failsafe condition // but we need to recover quickly failsafe.throttle_counter--; if (failsafe.throttle_counter > 3) { failsafe.throttle_counter = 3; } if (failsafe.throttle_counter == 1) { gcs().send_text(MAV_SEVERITY_WARNING, "Throttle failsafe off"); } else if(failsafe.throttle_counter == 0) { failsafe.rc_failsafe = false; AP_Notify::flags.failsafe_radio = false; } } } void Plane::trim_radio() { if (failsafe.rc_failsafe) { // can't trim if we don't have valid input return; } if (plane.control_mode != &mode_manual) { gcs().send_text(MAV_SEVERITY_ERROR, "trim failed, not in manual mode"); return; } if (labs(channel_roll->get_control_in()) > (channel_roll->get_range() * 0.2) || labs(channel_pitch->get_control_in()) > (channel_pitch->get_range() * 0.2)) { // don't trim for extreme values - if we attempt to trim // more than 20 percent range left then assume the // sticks are not properly centered. This also prevents // problems with starting APM with the TX off gcs().send_text(MAV_SEVERITY_ERROR, "trim failed, large roll and pitch input"); return; } if (degrees(ahrs.get_gyro().length()) > 30.0) { // rotating more than 30 deg/second gcs().send_text(MAV_SEVERITY_ERROR, "trim failed, large movement"); return; } // trim main surfaces SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_aileron); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_elevator); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_rudder); // trim elevons SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_elevon_left); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_elevon_right); // trim vtail SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_vtail_left); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_vtail_right); if (is_zero(SRV_Channels::get_output_scaled(SRV_Channel::k_rudder))) { // trim differential spoilers if no rudder input SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_dspoilerLeft1); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_dspoilerLeft2); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_dspoilerRight1); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_dspoilerRight2); } if (is_zero(SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto)) && is_zero(SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap))) { // trim flaperons if no flap input SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_flaperon_left); SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::k_flaperon_right); } // now save input trims, as these have been moved to the outputs channel_roll->set_and_save_trim(); channel_pitch->set_and_save_trim(); channel_rudder->set_and_save_trim(); gcs().send_text(MAV_SEVERITY_NOTICE, "trim complete"); } /* check if throttle value is within allowed range */ bool Plane::rc_throttle_value_ok(void) const { if (ThrFailsafe(g.throttle_fs_enabled.get()) == ThrFailsafe::Disabled) { return true; } if (channel_throttle->get_reverse()) { return channel_throttle->get_radio_in() < g.throttle_fs_value; } return channel_throttle->get_radio_in() > g.throttle_fs_value; } /* return true if throttle level is below throttle failsafe threshold or RC input is invalid */ bool Plane::rc_failsafe_active(void) const { if (!rc_throttle_value_ok()) { return true; } if (millis() - failsafe.last_valid_rc_ms > 1000) { // we haven't had a valid RC frame for 1 seconds return true; } return false; } /* expo handling for MANUAL, ACRO and TRAINING modes */ static float channel_expo(RC_Channel *chan, int8_t expo, bool use_dz) { if (chan == nullptr) { return 0; } float rin = use_dz? chan->get_control_in() : chan->get_control_in_zero_dz(); return SERVO_MAX * expo_curve(constrain_float(expo*0.01, 0, 1), rin/SERVO_MAX); } float Plane::roll_in_expo(bool use_dz) const { return channel_expo(channel_roll, g2.man_expo_roll, use_dz); } float Plane::pitch_in_expo(bool use_dz) const { return channel_expo(channel_pitch, g2.man_expo_pitch, use_dz); } float Plane::rudder_in_expo(bool use_dz) const { return channel_expo(channel_rudder, g2.man_expo_rudder, use_dz); } bool Plane::throttle_at_zero(void) const { /* true if throttle stick is at idle position...if throttle trim has been moved to center stick area in conjunction with sprung throttle, cannot use in_trim, must use rc_min */ if (((!(g2.flight_options & FlightOptions::CENTER_THROTTLE_TRIM) && channel_throttle->in_trim_dz()) || (g2.flight_options & FlightOptions::CENTER_THROTTLE_TRIM && channel_throttle->within_min_dz()))) { return true; } return false; }