#pragma once #include #include // ArduPilot Mega Vector/Matrix math Library #include // Notify library #include #include // filter library // offsets for motors in motor_out and _motor_filtered arrays #define AP_MOTORS_MOT_1 0U #define AP_MOTORS_MOT_2 1U #define AP_MOTORS_MOT_3 2U #define AP_MOTORS_MOT_4 3U #define AP_MOTORS_MOT_5 4U #define AP_MOTORS_MOT_6 5U #define AP_MOTORS_MOT_7 6U #define AP_MOTORS_MOT_8 7U #define AP_MOTORS_MOT_9 8U #define AP_MOTORS_MOT_10 9U #define AP_MOTORS_MOT_11 10U #define AP_MOTORS_MOT_12 11U #define AP_MOTORS_MAX_NUM_MOTORS 12 // motor update rate #define AP_MOTORS_SPEED_DEFAULT 490 // default output rate to the motors /// @class AP_Motors class AP_Motors { public: enum motor_frame_class { MOTOR_FRAME_UNDEFINED = 0, MOTOR_FRAME_QUAD = 1, MOTOR_FRAME_HEXA = 2, MOTOR_FRAME_OCTA = 3, MOTOR_FRAME_OCTAQUAD = 4, MOTOR_FRAME_Y6 = 5, MOTOR_FRAME_HELI = 6, MOTOR_FRAME_TRI = 7, MOTOR_FRAME_SINGLE = 8, MOTOR_FRAME_COAX = 9, MOTOR_FRAME_TAILSITTER = 10, MOTOR_FRAME_HELI_DUAL = 11, MOTOR_FRAME_DODECAHEXA = 12, }; enum motor_frame_type { MOTOR_FRAME_TYPE_PLUS = 0, MOTOR_FRAME_TYPE_X = 1, MOTOR_FRAME_TYPE_V = 2, MOTOR_FRAME_TYPE_H = 3, MOTOR_FRAME_TYPE_VTAIL = 4, MOTOR_FRAME_TYPE_ATAIL = 5, MOTOR_FRAME_TYPE_Y6B = 10, MOTOR_FRAME_TYPE_Y6F = 11 // for FireFlyY6 }; // Constructor AP_Motors(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT); // check initialisation succeeded bool initialised_ok() const { return _flags.initialised_ok; } // arm, disarm or check status status of motors bool armed() const { return _flags.armed; } void armed(bool arm); // set motor interlock status void set_interlock(bool set) { _flags.interlock = set;} // get motor interlock status. true means motors run, false motors don't run bool get_interlock() const { return _flags.interlock; } // set_roll, set_pitch, set_yaw, set_throttle void set_roll(float roll_in) { _roll_in = roll_in; }; // range -1 ~ +1 void set_pitch(float pitch_in) { _pitch_in = pitch_in; }; // range -1 ~ +1 void set_yaw(float yaw_in) { _yaw_in = yaw_in; }; // range -1 ~ +1 void set_throttle(float throttle_in) { _throttle_in = throttle_in; }; // range 0 ~ 1 void set_throttle_avg_max(float throttle_avg_max) { _throttle_avg_max = constrain_float(throttle_avg_max,0.0f,1.0f); }; // range 0 ~ 1 void set_throttle_filter_cutoff(float filt_hz) { _throttle_filter.set_cutoff_frequency(filt_hz); } void set_forward(float forward_in) { _forward_in = forward_in; }; // range -1 ~ +1 void set_lateral(float lateral_in) { _lateral_in = lateral_in; }; // range -1 ~ +1 // accessors for roll, pitch, yaw and throttle inputs to motors float get_roll() const { return _roll_in; } float get_pitch() const { return _pitch_in; } float get_yaw() const { return _yaw_in; } float get_throttle() const { return constrain_float(_throttle_filter.get(),0.0f,1.0f); } float get_throttle_bidirectional() const { return constrain_float(2*(_throttle_filter.get()-0.5f),-1.0f,1.0f); } float get_forward() const { return _forward_in; } float get_lateral() const { return _lateral_in; } virtual float get_throttle_hover() const = 0; // spool up states enum spool_up_down_desired { DESIRED_SHUT_DOWN = 0, // all motors stop DESIRED_SPIN_WHEN_ARMED = 1, // all motors at spin when armed DESIRED_THROTTLE_UNLIMITED = 2, // motors are no longer constrained by start up procedure }; virtual void set_desired_spool_state(enum spool_up_down_desired spool) { _spool_desired = spool; }; enum spool_up_down_desired get_desired_spool_state(void) const { return _spool_desired; } // // voltage, current and air pressure compensation or limiting features - multicopters only // // set_voltage - set voltage to be used for output scaling void set_voltage(float volts){ _batt_voltage = volts; } void set_voltage_resting_estimate(float volts) { _batt_voltage_resting_estimate = volts; } // set_current - set current to be used for output scaling void set_current(float current){ _batt_current = current; } // get and set battery resistance estimate float get_batt_resistance() const { return _batt_resistance; } void set_resistance(float resistance){ _batt_resistance = resistance; } // set_density_ratio - sets air density as a proportion of sea level density void set_air_density_ratio(float ratio) { _air_density_ratio = ratio; } // structure for holding motor limit flags struct AP_Motors_limit { uint8_t roll_pitch : 1; // we have reached roll or pitch limit uint8_t yaw : 1; // we have reached yaw limit uint8_t throttle_lower : 1; // we have reached throttle's lower limit uint8_t throttle_upper : 1; // we have reached throttle's upper limit } limit; // // virtual functions that should be implemented by child classes // // set update rate to motors - a value in hertz virtual void set_update_rate( uint16_t speed_hz ) { _speed_hz = speed_hz; } // init virtual void init(motor_frame_class frame_class, motor_frame_type frame_type) = 0; // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) virtual void set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) = 0; // enable - starts allowing signals to be sent to motors virtual void enable() = 0; // output - sends commands to the motors virtual void output() = 0; // output_min - sends minimum values out to the motors virtual void output_min() = 0; // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0; // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint16_t get_motor_mask() = 0; // pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle void set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input); // set loop rate. Used to support loop rate as a parameter void set_loop_rate(uint16_t loop_rate) { _loop_rate = loop_rate; } enum pwm_type { PWM_TYPE_NORMAL=0, PWM_TYPE_ONESHOT=1, PWM_TYPE_ONESHOT125=2, PWM_TYPE_BRUSHED16kHz=3 }; pwm_type get_pwm_type(void) const { return (pwm_type)_pwm_type.get(); } protected: // output functions that should be overloaded by child classes virtual void output_armed_stabilizing()=0; virtual void rc_write(uint8_t chan, uint16_t pwm); virtual void rc_set_freq(uint32_t mask, uint16_t freq_hz); virtual void rc_enable_ch(uint8_t chan); virtual uint32_t rc_map_mask(uint32_t mask) const; // add a motor to the motor map void add_motor_num(int8_t motor_num); // update the throttle input filter virtual void update_throttle_filter() = 0; // save parameters as part of disarming virtual void save_params_on_disarm() {} // convert input in -1 to +1 range to pwm output int16_t calc_pwm_output_1to1(float input, const SRV_Channel *servo); // convert input in 0 to +1 range to pwm output int16_t calc_pwm_output_0to1(float input, const SRV_Channel *servo); // flag bitmask struct AP_Motors_flags { uint8_t armed : 1; // 0 if disarmed, 1 if armed uint8_t interlock : 1; // 1 if the motor interlock is enabled (i.e. motors run), 0 if disabled (motors don't run) uint8_t initialised_ok : 1; // 1 if initialisation was successful } _flags; // internal variables uint16_t _loop_rate; // rate in Hz at which output() function is called (normally 400hz) uint16_t _speed_hz; // speed in hz to send updates to motors float _roll_in; // desired roll control from attitude controllers, -1 ~ +1 float _pitch_in; // desired pitch control from attitude controller, -1 ~ +1 float _yaw_in; // desired yaw control from attitude controller, -1 ~ +1 float _throttle_in; // last throttle input from set_throttle caller float _forward_in; // last forward input from set_forward caller float _lateral_in; // last lateral input from set_lateral caller float _throttle_avg_max; // last throttle input from set_throttle_avg_max LowPassFilterFloat _throttle_filter; // throttle input filter spool_up_down_desired _spool_desired; // desired spool state // battery voltage, current and air pressure compensation variables float _batt_voltage; // latest battery voltage reading float _batt_voltage_resting_estimate; // estimated battery voltage with sag removed float _batt_current; // latest battery current reading float _batt_resistance; // latest battery resistance estimate in ohms float _air_density_ratio; // air density / sea level density - decreases in altitude // mapping to output channels uint8_t _motor_map[AP_MOTORS_MAX_NUM_MOTORS]; uint16_t _motor_map_mask; uint16_t _motor_fast_mask; // pass through variables float _roll_radio_passthrough = 0.0f; // roll input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed float _pitch_radio_passthrough = 0.0f; // pitch input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed float _throttle_radio_passthrough = 0.0f; // throttle/collective input from pilot in 0 ~ 1 range. used for setup and providing servo feedback while landed float _yaw_radio_passthrough = 0.0f; // yaw input from pilot in -1 ~ +1 range. used for setup and providing servo feedback while landed AP_Int8 _pwm_type; // PWM output type };