#include "Rover.h" void Rover::init_barometer(bool full_calibration) { gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer"); if (full_calibration) { barometer.calibrate(); } else { barometer.update_calibration(); } gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); } void Rover::init_sonar(void) { sonar.init(); } // init beacons used for non-gps position estimates void Rover::init_beacon() { g2.beacon.init(); } // update beacons void Rover::update_beacon() { g2.beacon.update(); } // init visual odometry sensor void Rover::init_visual_odom() { g2.visual_odom.init(); } // update visual odometry sensor void Rover::update_visual_odom() { // check for updates if (g2.visual_odom.enabled() && (g2.visual_odom.get_last_update_ms() != visual_odom_last_update_ms)) { visual_odom_last_update_ms = g2.visual_odom.get_last_update_ms(); const float time_delta_sec = g2.visual_odom.get_time_delta_usec() / 1000000.0f; ahrs.writeBodyFrameOdom(g2.visual_odom.get_confidence(), g2.visual_odom.get_position_delta(), g2.visual_odom.get_angle_delta(), time_delta_sec, visual_odom_last_update_ms, g2.visual_odom.get_pos_offset()); // log sensor data DataFlash.Log_Write_VisualOdom(time_delta_sec, g2.visual_odom.get_angle_delta(), g2.visual_odom.get_position_delta(), g2.visual_odom.get_confidence()); } } // read_battery - reads battery voltage and current and invokes failsafe // should be called at 10hz void Rover::read_battery(void) { battery.read(); } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void Rover::read_receiver_rssi(void) { receiver_rssi = rssi.read_receiver_rssi_uint8(); } // Calibrate compass void Rover::compass_cal_update() { if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } } // Accel calibration void Rover::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them float trim_roll, trim_pitch; float trim_roll, trim_pitch; if (ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } } // read the sonars void Rover::read_sonars(void) { sonar.update(); if (sonar.status(0) == RangeFinder::RangeFinder_NotConnected) { // this makes it possible to disable sonar at runtime return; } if (sonar.has_data(1)) { // we have two sonars obstacle.sonar1_distance_cm = sonar.distance_cm(0); obstacle.sonar2_distance_cm = sonar.distance_cm(1); if (obstacle.sonar1_distance_cm < static_cast(g.sonar_trigger_cm) && obstacle.sonar1_distance_cm < static_cast(obstacle.sonar2_distance_cm)) { // we have an object on the left if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar1 obstacle %u cm", static_cast(obstacle.sonar1_distance_cm)); } obstacle.detected_time_ms = AP_HAL::millis(); obstacle.turn_angle = g.sonar_turn_angle; } else if (obstacle.sonar2_distance_cm < static_cast(g.sonar_trigger_cm)) { // we have an object on the right if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar2 obstacle %u cm", static_cast(obstacle.sonar2_distance_cm)); } obstacle.detected_time_ms = AP_HAL::millis(); obstacle.turn_angle = -g.sonar_turn_angle; } } else { // we have a single sonar obstacle.sonar1_distance_cm = sonar.distance_cm(0); obstacle.sonar2_distance_cm = 0; if (obstacle.sonar1_distance_cm < static_cast(g.sonar_trigger_cm)) { // obstacle detected in front if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar obstacle %u cm", static_cast(obstacle.sonar1_distance_cm)); } obstacle.detected_time_ms = AP_HAL::millis(); obstacle.turn_angle = g.sonar_turn_angle; } } Log_Write_Sonar(); // no object detected - reset after the turn time if (obstacle.detected_count >= g.sonar_debounce && AP_HAL::millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) { gcs_send_text_fmt(MAV_SEVERITY_INFO, "Obstacle passed"); obstacle.detected_count = 0; obstacle.turn_angle = 0; } } /* update AP_Button */ void Rover::button_update(void) { button.update(); } // update error mask of sensors and subsystems. The mask // uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set // then it indicates that the sensor or subsystem is present but // not functioning correctly. void Rover::update_sensor_status_flags(void) { // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } if (g2.visual_odom.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION; } if (rover.DataFlash.logging_present()) { // primary logging only (usually File) control_sensors_present |= MAV_SYS_STATUS_LOGGING; } // all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_LOGGING); switch (control_mode) { case MANUAL: case HOLD: break; case LEARNING: case STEERING: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation break; case AUTO: case RTL: case GUIDED: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control break; case INITIALISING: break; } if (rover.DataFlash.logging_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } // default to all healthy except compass and gps which we set individually control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS); if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; } if (g2.visual_odom.enabled() && !g2.visual_odom.healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION; } if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (sonar.num_sensors() > 0) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (g.sonar_trigger_cm > 0) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } if (sonar.has_data(0)) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } if (rover.DataFlash.logging_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; } if (AP_Notify::flags.initialising) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } #if FRSKY_TELEM_ENABLED == ENABLED // give mask of error flags to Frsky_Telemetry frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present); #endif }