#include #include "AP_NavEKF3.h" #include "AP_NavEKF3_core.h" #include #include /******************************************************** * RESET FUNCTIONS * ********************************************************/ // Reset XY velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute // Do not reset vertical velocity using GPS as there is baro alt available to constrain drift void NavEKF3_core::ResetVelocity(resetDataSource velResetSource) { // Store the velocity before the reset so that we can record the reset delta velResetNE.x = stateStruct.velocity.x; velResetNE.y = stateStruct.velocity.y; // reset the corresponding covariances zeroRows(P,4,5); zeroCols(P,4,5); if (PV_AidingMode != AID_ABSOLUTE) { stateStruct.velocity.xy().zero(); // set the variances using the measurement noise parameter P[5][5] = P[4][4] = sq(frontend->_gpsHorizVelNoise); } else { // reset horizontal velocity states to the GPS velocity if available if ((imuSampleTime_ms - lastTimeGpsReceived_ms < 250 && velResetSource == resetDataSource::DEFAULT) || velResetSource == resetDataSource::GPS) { // correct for antenna position gps_elements gps_corrected = gpsDataNew; CorrectGPSForAntennaOffset(gps_corrected); stateStruct.velocity.x = gps_corrected.vel.x; stateStruct.velocity.y = gps_corrected.vel.y; // set the variances using the reported GPS speed accuracy P[5][5] = P[4][4] = sq(MAX(frontend->_gpsHorizVelNoise,gpsSpdAccuracy)); #if EK3_FEATURE_EXTERNAL_NAV } else if ((imuSampleTime_ms - extNavVelMeasTime_ms < 250 && velResetSource == resetDataSource::DEFAULT) || velResetSource == resetDataSource::EXTNAV) { // use external nav data as the 2nd preference // already corrected for sensor position stateStruct.velocity.x = extNavVelDelayed.vel.x; stateStruct.velocity.y = extNavVelDelayed.vel.y; P[5][5] = P[4][4] = sq(extNavVelDelayed.err); #endif // EK3_FEATURE_EXTERNAL_NAV } else { stateStruct.velocity.x = 0.0f; stateStruct.velocity.y = 0.0f; // set the variances using the likely speed range P[5][5] = P[4][4] = sq(25.0f); } // clear the timeout flags and counters velTimeout = false; lastVelPassTime_ms = imuSampleTime_ms; } for (uint8_t i=0; i_gpsHorizPosNoise); } else { // Use GPS data as first preference if fresh data is available if ((imuSampleTime_ms - lastTimeGpsReceived_ms < 250 && posResetSource == resetDataSource::DEFAULT) || posResetSource == resetDataSource::GPS) { // correct for antenna position gps_elements gps_corrected = gpsDataNew; CorrectGPSForAntennaOffset(gps_corrected); // record the ID of the GPS for the data we are using for the reset last_gps_idx = gps_corrected.sensor_idx; // calculate position const Location gpsloc{gps_corrected.lat, gps_corrected.lng, 0, Location::AltFrame::ABSOLUTE}; stateStruct.position.xy() = EKF_origin.get_distance_NE_ftype(gpsloc); // compensate for offset between last GPS measurement and the EKF time horizon. Note that this is an unusual // time delta in that it can be both -ve and +ve const int32_t tdiff = imuDataDelayed.time_ms - gps_corrected.time_ms; stateStruct.position.xy() += gps_corrected.vel.xy()*0.001*tdiff; // set the variances using the position measurement noise parameter P[7][7] = P[8][8] = sq(MAX(gpsPosAccuracy,frontend->_gpsHorizPosNoise)); #if EK3_FEATURE_BEACON_FUSION } else if ((imuSampleTime_ms - rngBcn.last3DmeasTime_ms < 250 && posResetSource == resetDataSource::DEFAULT) || posResetSource == resetDataSource::RNGBCN) { // use the range beacon data as a second preference stateStruct.position.x = rngBcn.receiverPos.x; stateStruct.position.y = rngBcn.receiverPos.y; // set the variances from the beacon alignment filter P[7][7] = rngBcn.receiverPosCov[0][0]; P[8][8] = rngBcn.receiverPosCov[1][1]; #endif #if EK3_FEATURE_EXTERNAL_NAV } else if ((imuSampleTime_ms - extNavDataDelayed.time_ms < 250 && posResetSource == resetDataSource::DEFAULT) || posResetSource == resetDataSource::EXTNAV) { // use external nav data as the third preference stateStruct.position.x = extNavDataDelayed.pos.x; stateStruct.position.y = extNavDataDelayed.pos.y; // set the variances as received from external nav system data P[7][7] = P[8][8] = sq(extNavDataDelayed.posErr); #endif // EK3_FEATURE_EXTERNAL_NAV } } for (uint8_t i=0; ideadReckonDeclare_ms || (PV_AidingMode == AID_NONE) || !validOrigin) { return false; } // Store the position before the reset so that we can record the reset delta posResetNE.x = stateStruct.position.x; posResetNE.y = stateStruct.position.y; // reset the corresponding covariances zeroRows(P,7,8); zeroCols(P,7,8); // set the variances using the position measurement noise parameter P[7][7] = P[8][8] = sq(MAX(posAccuracy,frontend->_gpsHorizPosNoise)); // Correct the position for time delay relative to fusion time horizon assuming a constant velocity // Limit time stamp to a range between current time and 5 seconds ago const uint32_t timeStampConstrained_ms = MAX(MIN(timestamp_ms, imuSampleTime_ms), imuSampleTime_ms - 5000); const int32_t delta_ms = int32_t(imuDataDelayed.time_ms - timeStampConstrained_ms); const ftype delaySec = 1E-3F * ftype(delta_ms); const Vector2F newPosNE = EKF_origin.get_distance_NE_ftype(loc) + stateStruct.velocity.xy() * delaySec; ResetPositionNE(newPosNE.x,newPosNE.y); return true; } #endif // EK3_FEATURE_POSITION_RESET // reset the stateStruct's NE position to the specified position // posResetNE is updated to hold the change in position // storedOutput, outputDataNew and outputDataDelayed are updated with the change in position // lastPosReset_ms is updated with the time of the reset void NavEKF3_core::ResetPositionNE(ftype posN, ftype posE) { // Store the position before the reset so that we can record the reset delta const Vector3F posOrig = stateStruct.position; // Set the position states to the new position stateStruct.position.x = posN; stateStruct.position.y = posE; // Calculate the position offset due to the reset posResetNE.x = stateStruct.position.x - posOrig.x; posResetNE.y = stateStruct.position.y - posOrig.y; // Add the offset to the output observer states for (uint8_t i=0; isources.useVelZSource(AP_NavEKF_Source::SourceZ::GPS) && gpsDataNew.have_vz && (imuSampleTime_ms - gpsDataDelayed.time_ms < 500)) { stateStruct.velocity.z = gpsDataNew.vel.z; #if EK3_FEATURE_EXTERNAL_NAV } else if (inFlight && useExtNavVel && (activeHgtSource == AP_NavEKF_Source::SourceZ::EXTNAV)) { stateStruct.velocity.z = extNavVelDelayed.vel.z; #endif } else if (onGround) { stateStruct.velocity.z = 0.0f; } for (uint8_t i=0; i_gpsVertVelNoise); } vertVelVarClipCounter = 0; } // Zero the EKF height datum // Return true if the height datum reset has been performed bool NavEKF3_core::resetHeightDatum(void) { if (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER || !onGround) { // only allow resets when on the ground. // If using using rangefinder for height then never perform a // reset of the height datum return false; } // record the old height estimate ftype oldHgt = -stateStruct.position.z; // reset the barometer so that it reads zero at the current height dal.baro().update_calibration(); // reset the height state stateStruct.position.z = 0.0f; // adjust the height of the EKF origin so that the origin plus baro height before and after the reset is the same if (validOrigin) { if (!gpsGoodToAlign) { // if we don't have GPS lock then we shouldn't be doing a // resetHeightDatum, but if we do then the best option is // to maintain the old error EKF_origin.alt += (int32_t)(100.0f * oldHgt); } else { // if we have a good GPS lock then reset to the GPS // altitude. This ensures the reported AMSL alt from // getLLH() is equal to GPS altitude, while also ensuring // that the relative alt is zero EKF_origin.alt = dal.gps().location().alt; } ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt; } // set the terrain state to zero (on ground). The adjustment for // frame height will get added in the later constraints terrainState = 0; return true; } /* correct GPS data for position offset of antenna phase centre relative to the IMU */ void NavEKF3_core::CorrectGPSForAntennaOffset(gps_elements &gps_data) const { // return immediately if already corrected if (gps_data.corrected) { return; } gps_data.corrected = true; const Vector3F posOffsetBody = dal.gps().get_antenna_offset(gps_data.sensor_idx).toftype() - accelPosOffset; if (posOffsetBody.is_zero()) { return; } // TODO use a filtered angular rate with a group delay that matches the GPS delay Vector3F angRate = imuDataDelayed.delAng * (1.0f/imuDataDelayed.delAngDT); Vector3F velOffsetBody = angRate % posOffsetBody; Vector3F velOffsetEarth = prevTnb.mul_transpose(velOffsetBody); gps_data.vel -= velOffsetEarth; Vector3F posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); Location::offset_latlng(gps_data.lat, gps_data.lng, -posOffsetEarth.x, -posOffsetEarth.y); gps_data.hgt += posOffsetEarth.z; } // correct external navigation earth-frame position using sensor body-frame offset void NavEKF3_core::CorrectExtNavForSensorOffset(ext_nav_elements &ext_nav_data) { // return immediately if already corrected if (ext_nav_data.corrected) { return; } ext_nav_data.corrected = true; // external nav data is against the public_origin, so convert to offset from EKF_origin ext_nav_data.pos.xy() += EKF_origin.get_distance_NE_ftype(public_origin); #if HAL_VISUALODOM_ENABLED const auto *visual_odom = dal.visualodom(); if (visual_odom == nullptr) { return; } const Vector3F posOffsetBody = visual_odom->get_pos_offset().toftype() - accelPosOffset; if (posOffsetBody.is_zero()) { return; } Vector3F posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); ext_nav_data.pos.x -= posOffsetEarth.x; ext_nav_data.pos.y -= posOffsetEarth.y; ext_nav_data.pos.z -= posOffsetEarth.z; #endif } // correct external navigation earth-frame velocity using sensor body-frame offset void NavEKF3_core::CorrectExtNavVelForSensorOffset(ext_nav_vel_elements &ext_nav_vel_data) const { // return immediately if already corrected if (ext_nav_vel_data.corrected) { return; } ext_nav_vel_data.corrected = true; #if HAL_VISUALODOM_ENABLED const auto *visual_odom = dal.visualodom(); if (visual_odom == nullptr) { return; } const Vector3F posOffsetBody = visual_odom->get_pos_offset().toftype() - accelPosOffset; if (posOffsetBody.is_zero()) { return; } // TODO use a filtered angular rate with a group delay that matches the sensor delay const Vector3F angRate = imuDataDelayed.delAng * (1.0/imuDataDelayed.delAngDT); ext_nav_vel_data.vel += get_vel_correction_for_sensor_offset(posOffsetBody, prevTnb, angRate); #endif } // calculate velocity variance helper function void NavEKF3_core::CalculateVelInnovationsAndVariances(const Vector3F &velocity, ftype noise, ftype accel_scale, Vector3F &innovations, Vector3F &variances) const { // innovations are latest estimate - latest observation innovations = stateStruct.velocity - velocity; const ftype obs_data_chk = sq(constrain_ftype(noise, 0.05, 5.0)) + sq(accel_scale * accNavMag); // calculate innovation variance. velocity states start at index 4 variances.x = P[4][4] + obs_data_chk; variances.y = P[5][5] + obs_data_chk; variances.z = P[6][6] + obs_data_chk; } /******************************************************** * FUSE MEASURED_DATA * ********************************************************/ // select fusion of velocity, position and height measurements void NavEKF3_core::SelectVelPosFusion() { // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz // If so, don't fuse measurements on this time step to reduce frame over-runs // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements if (magFusePerformed && dtIMUavg < 0.005f && !posVelFusionDelayed) { posVelFusionDelayed = true; return; } else { posVelFusionDelayed = false; } #if EK3_FEATURE_EXTERNAL_NAV // Check for data at the fusion time horizon extNavDataToFuse = storedExtNav.recall(extNavDataDelayed, imuDataDelayed.time_ms); if (extNavDataToFuse) { CorrectExtNavForSensorOffset(extNavDataDelayed); } extNavVelToFuse = storedExtNavVel.recall(extNavVelDelayed, imuDataDelayed.time_ms); if (extNavVelToFuse) { CorrectExtNavVelForSensorOffset(extNavVelDelayed); // calculate innovations and variances for reporting purposes only CalculateVelInnovationsAndVariances(extNavVelDelayed.vel, extNavVelDelayed.err, frontend->extNavVelVarAccScale, extNavVelInnov, extNavVelVarInnov); // record time innovations were calculated (for timeout checks) extNavVelInnovTime_ms = dal.millis(); } #endif // EK3_FEATURE_EXTERNAL_NAV // Read GPS data from the sensor readGpsData(); readGpsYawData(); // get data that has now fallen behind the fusion time horizon gpsDataToFuse = storedGPS.recall(gpsDataDelayed,imuDataDelayed.time_ms); if (gpsDataToFuse) { CorrectGPSForAntennaOffset(gpsDataDelayed); // calculate innovations and variances for reporting purposes only CalculateVelInnovationsAndVariances(gpsDataDelayed.vel, frontend->_gpsHorizVelNoise, frontend->gpsNEVelVarAccScale, gpsVelInnov, gpsVelVarInnov); // record time innovations were calculated (for timeout checks) gpsVelInnovTime_ms = dal.millis(); } // detect position source changes. Trigger position reset if position source is valid const AP_NavEKF_Source::SourceXY posxy_source = frontend->sources.getPosXYSource(); if (posxy_source != posxy_source_last) { posxy_source_reset = (posxy_source != AP_NavEKF_Source::SourceXY::NONE); posxy_source_last = posxy_source; } // initialise all possible data we may fuse fusePosData = false; fuseVelData = false; // Determine if we need to fuse position and velocity data on this time step if (gpsDataToFuse && (PV_AidingMode == AID_ABSOLUTE) && (posxy_source == AP_NavEKF_Source::SourceXY::GPS)) { // Don't fuse velocity data if GPS doesn't support it fuseVelData = frontend->sources.useVelXYSource(AP_NavEKF_Source::SourceXY::GPS); fusePosData = true; #if EK3_FEATURE_EXTERNAL_NAV extNavUsedForPos = false; #endif // copy corrected GPS data to observation vector if (fuseVelData) { velPosObs[0] = gpsDataDelayed.vel.x; velPosObs[1] = gpsDataDelayed.vel.y; velPosObs[2] = gpsDataDelayed.vel.z; } const Location gpsloc{gpsDataDelayed.lat, gpsDataDelayed.lng, 0, Location::AltFrame::ABSOLUTE}; const Vector2F posxy = EKF_origin.get_distance_NE_ftype(gpsloc); velPosObs[3] = posxy.x; velPosObs[4] = posxy.y; #if EK3_FEATURE_EXTERNAL_NAV } else if (extNavDataToFuse && (PV_AidingMode == AID_ABSOLUTE) && (posxy_source == AP_NavEKF_Source::SourceXY::EXTNAV)) { // use external nav system for horizontal position extNavUsedForPos = true; fusePosData = true; velPosObs[3] = extNavDataDelayed.pos.x; velPosObs[4] = extNavDataDelayed.pos.y; #endif // EK3_FEATURE_EXTERNAL_NAV } #if EK3_FEATURE_EXTERNAL_NAV // fuse external navigation velocity data if available // extNavVelDelayed is already corrected for sensor position if (extNavVelToFuse && frontend->sources.useVelXYSource(AP_NavEKF_Source::SourceXY::EXTNAV)) { fuseVelData = true; velPosObs[0] = extNavVelDelayed.vel.x; velPosObs[1] = extNavVelDelayed.vel.y; velPosObs[2] = extNavVelDelayed.vel.z; } #endif // we have GPS data to fuse and a request to align the yaw using the GPS course if (gpsYawResetRequest) { realignYawGPS(false); } // Select height data to be fused from the available baro, range finder and GPS sources selectHeightForFusion(); // if we are using GPS, check for a change in receiver and reset position and height if (gpsDataToFuse && (PV_AidingMode == AID_ABSOLUTE) && (posxy_source == AP_NavEKF_Source::SourceXY::GPS) && (gpsDataDelayed.sensor_idx != last_gps_idx || posxy_source_reset)) { // mark a source reset as consumed posxy_source_reset = false; // record the ID of the GPS that we are using for the reset last_gps_idx = gpsDataDelayed.sensor_idx; // reset the position to the GPS position const Location gpsloc{gpsDataDelayed.lat, gpsDataDelayed.lng, 0, Location::AltFrame::ABSOLUTE}; const Vector2F posxy = EKF_origin.get_distance_NE_ftype(gpsloc); ResetPositionNE(posxy.x, posxy.y); // If we are also using GPS as the height reference, reset the height if (activeHgtSource == AP_NavEKF_Source::SourceZ::GPS) { ResetPositionD(-hgtMea); } } #if EK3_FEATURE_EXTERNAL_NAV // check for external nav position reset if (extNavDataToFuse && (PV_AidingMode == AID_ABSOLUTE) && (posxy_source == AP_NavEKF_Source::SourceXY::EXTNAV) && (extNavDataDelayed.posReset || posxy_source_reset)) { // mark a source reset as consumed posxy_source_reset = false; ResetPositionNE(extNavDataDelayed.pos.x, extNavDataDelayed.pos.y); if (activeHgtSource == AP_NavEKF_Source::SourceZ::EXTNAV) { ResetPositionD(-hgtMea); } } #endif // EK3_FEATURE_EXTERNAL_NAV // If we are operating without any aiding, fuse in constant position of constant // velocity measurements to constrain tilt drift. This assumes a non-manoeuvring // vehicle. Do this to coincide with the height fusion. if (fuseHgtData && PV_AidingMode == AID_NONE) { if (assume_zero_sideslip() && tiltAlignComplete && motorsArmed) { // handle special case where we are launching a FW aircraft without magnetometer fusePosData = false; velPosObs[0] = 0.0f; velPosObs[1] = 0.0f; velPosObs[2] = stateStruct.velocity.z; bool resetVelNE = !prevMotorsArmed; // reset states to stop launch accel causing tilt error if (imuDataDelayed.delVel.x > 1.1f * GRAVITY_MSS * imuDataDelayed.delVelDT) { lastLaunchAccelTime_ms = imuSampleTime_ms; fuseVelData = false; resetVelNE = true; } else if (lastLaunchAccelTime_ms != 0 && (imuSampleTime_ms - lastLaunchAccelTime_ms) < 10000) { fuseVelData = false; resetVelNE = true; } else { fuseVelData = true; } if (resetVelNE) { stateStruct.velocity.x = 0.0f; stateStruct.velocity.y = 0.0f; } } else { fusePosData = true; fuseVelData = false; velPosObs[3] = lastKnownPositionNE.x; velPosObs[4] = lastKnownPositionNE.y; } } // perform fusion if (fuseVelData || fusePosData || fuseHgtData) { FuseVelPosNED(); // clear the flags to prevent repeated fusion of the same data fuseVelData = false; fuseHgtData = false; fusePosData = false; } } // fuse selected position, velocity and height measurements void NavEKF3_core::FuseVelPosNED() { // health is set bad until test passed bool velCheckPassed = false; // boolean true if velocity measurements have passed innovation consistency checks bool posCheckPassed = false; // boolean true if position measurements have passed innovation consistency check bool hgtCheckPassed = false; // boolean true if height measurements have passed innovation consistency check // declare variables used to control access to arrays bool fuseData[6] {}; uint8_t stateIndex; uint8_t obsIndex; // declare variables used by state and covariance update calculations Vector6 R_OBS; // Measurement variances used for fusion Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only ftype SK; // perform sequential fusion of GPS measurements. This assumes that the // errors in the different velocity and position components are // uncorrelated which is not true, however in the absence of covariance // data from the GPS receiver it is the only assumption we can make // so we might as well take advantage of the computational efficiencies // associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // calculate additional error in GPS position caused by manoeuvring ftype posErr = frontend->gpsPosVarAccScale * accNavMag; // To-Do: this posErr should come from external nav when fusing external nav position // estimate the GPS Velocity, GPS horiz position and height measurement variances. // Use different errors if operating without external aiding using an assumed position or velocity of zero if (PV_AidingMode == AID_NONE) { if (tiltAlignComplete && motorsArmed) { // This is a compromise between corrections for gyro errors and reducing effect of manoeuvre accelerations on tilt estimate R_OBS[0] = sq(constrain_ftype(frontend->_noaidHorizNoise, 0.5f, 50.0f)); } else { // Use a smaller value to give faster initial alignment R_OBS[0] = sq(0.5f); } R_OBS[1] = R_OBS[0]; R_OBS[2] = R_OBS[0]; R_OBS[3] = R_OBS[0]; R_OBS[4] = R_OBS[0]; for (uint8_t i=0; i<=2; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; } else { if (gpsSpdAccuracy > 0.0f) { // use GPS receivers reported speed accuracy if available and floor at value set by GPS velocity noise parameter R_OBS[0] = sq(constrain_ftype(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f)); R_OBS[2] = sq(constrain_ftype(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f)); #if EK3_FEATURE_EXTERNAL_NAV } else if (extNavVelToFuse) { R_OBS[2] = R_OBS[0] = sq(constrain_ftype(extNavVelDelayed.err, 0.05f, 5.0f)); #endif } else { // calculate additional error in GPS velocity caused by manoeuvring R_OBS[0] = sq(constrain_ftype(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); R_OBS[2] = sq(constrain_ftype(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag); } R_OBS[1] = R_OBS[0]; // Use GPS reported position accuracy if available and floor at value set by GPS position noise parameter if (gpsPosAccuracy > 0.0f) { R_OBS[3] = sq(constrain_ftype(gpsPosAccuracy, frontend->_gpsHorizPosNoise, 100.0f)); #if EK3_FEATURE_EXTERNAL_NAV } else if (extNavUsedForPos) { R_OBS[3] = sq(constrain_ftype(extNavDataDelayed.posErr, 0.01f, 10.0f)); #endif } else { R_OBS[3] = sq(constrain_ftype(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); } R_OBS[4] = R_OBS[3]; // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity // For horizontal GPS velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPS performance // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early ftype obs_data_chk; #if EK3_FEATURE_EXTERNAL_NAV if (extNavVelToFuse) { obs_data_chk = sq(constrain_ftype(extNavVelDelayed.err, 0.05f, 5.0f)) + sq(frontend->extNavVelVarAccScale * accNavMag); } else #endif { obs_data_chk = sq(constrain_ftype(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); } R_OBS_DATA_CHECKS[0] = R_OBS_DATA_CHECKS[1] = R_OBS_DATA_CHECKS[2] = obs_data_chk; } R_OBS[5] = posDownObsNoise; for (uint8_t i=3; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; // if vertical GPS velocity data and an independent height source is being used, check to see if the GPS vertical velocity and altimeter // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting // the accelerometers and we should disable the GPS and barometer innovation consistency checks. if (gpsDataDelayed.have_vz && fuseVelData && (frontend->sources.getPosZSource() != AP_NavEKF_Source::SourceZ::GPS)) { // calculate innovations for height and vertical GPS vel measurements const ftype hgtErr = stateStruct.position.z - velPosObs[5]; const ftype velDErr = stateStruct.velocity.z - velPosObs[2]; // Check if they are the same sign and both more than 3-sigma out of bounds // Step the test threshold up in stages from 1 to 2 to 3 sigma after exiting // from a previous bad IMU event so that a subsequent error is caught more quickly. const uint32_t timeSinceLastBadIMU_ms = imuSampleTime_ms - badIMUdata_ms; float R_gain; if (timeSinceLastBadIMU_ms > (BAD_IMU_DATA_HOLD_MS * 2)) { R_gain = 9.0F; } else if (timeSinceLastBadIMU_ms > ((BAD_IMU_DATA_HOLD_MS * 3) / 2)) { R_gain = 4.0F; } else { R_gain = 1.0F; } if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > R_gain * R_OBS[5]) && (sq(velDErr) >R_gain * R_OBS[2])) { badIMUdata_ms = imuSampleTime_ms; } else { goodIMUdata_ms = imuSampleTime_ms; } if (timeSinceLastBadIMU_ms < BAD_IMU_DATA_HOLD_MS) { badIMUdata = true; stateStruct.velocity.z = gpsDataDelayed.vel.z; } else { badIMUdata = false; } } // Test horizontal position measurements if (fusePosData) { innovVelPos[3] = stateStruct.position.x - velPosObs[3]; innovVelPos[4] = stateStruct.position.y - velPosObs[4]; varInnovVelPos[3] = P[7][7] + R_OBS_DATA_CHECKS[3]; varInnovVelPos[4] = P[8][8] + R_OBS_DATA_CHECKS[4]; // Apply an innovation consistency threshold test // Don't allow test to fail if not navigating and using a constant position // assumption to constrain tilt errors because innovations can become large // due to vehicle motion. ftype maxPosInnov2 = sq(MAX(0.01 * (ftype)frontend->_gpsPosInnovGate, 1.0))*(varInnovVelPos[3] + varInnovVelPos[4]); posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; if (posTestRatio < 1.0f || (PV_AidingMode == AID_NONE)) { posCheckPassed = true; lastPosPassTime_ms = imuSampleTime_ms; } else if ((frontend->_gpsGlitchRadiusMax <= 0) && (PV_AidingMode != AID_NONE)) { // handle special case where the glitch radius parameter has been set to a non-positive number // to indicate that large velocity and position innovations should be clipped instead of rejected. posCheckPassed = true; lastPosPassTime_ms = imuSampleTime_ms; const ftype scaleFactor = 1.0F / sqrtF(posTestRatio); innovVelPos[3] *= scaleFactor; innovVelPos[4] *= scaleFactor; posCheckPassed = true; lastPosPassTime_ms = imuSampleTime_ms; } // Use position data if healthy or timed out or bad IMU data // Always fuse data if bad IMU to prevent aliasing and clipping pulling the state estimate away // from the measurement un-opposed if test threshold is exceeded. if (posCheckPassed || posTimeout || badIMUdata) { // if timed out or outside the specified uncertainty radius, reset to the external sensor // if velocity drift is being constrained, dont reset until gps passes quality checks const bool posVarianceIsTooLarge = (frontend->_gpsGlitchRadiusMax > 0) && (P[8][8] + P[7][7]) > sq(ftype(frontend->_gpsGlitchRadiusMax)); if (posTimeout || posVarianceIsTooLarge) { // reset the position to the current external sensor position ResetPosition(resetDataSource::DEFAULT); // Don't fuse the same data we have used to reset states. fusePosData = false; // Reset the position variances and corresponding covariances to a value that will pass the checks zeroRows(P,7,8); zeroCols(P,7,8); P[7][7] = sq(ftype(0.5f*frontend->_gpsGlitchRadiusMax)); P[8][8] = P[7][7]; // Reset the normalised innovation to avoid failing the bad fusion tests posTestRatio = 0.0f; // Reset velocity if it has timed out if (velTimeout) { ResetVelocity(resetDataSource::DEFAULT); // Don't fuse the same data we have used to reset states. fuseVelData = false; // Reset the normalised innovation to avoid failing the bad fusion tests velTestRatio = 0.0f; } } } else { fusePosData = false; } } // Test velocity measurements if (fuseVelData) { uint8_t imax = 2; // Don't fuse vertical velocity observations if disabled in sources or not available if ((!frontend->sources.haveVelZSource() || PV_AidingMode != AID_ABSOLUTE || !gpsDataDelayed.have_vz) && !useExtNavVel) { imax = 1; } // Apply an innovation consistency threshold test ftype innovVelSumSq = 0; // sum of squares of velocity innovations ftype varVelSum = 0; // sum of velocity innovation variances for (uint8_t i = 0; i<=imax; i++) { stateIndex = i + 4; const float innovation = stateStruct.velocity[i] - velPosObs[i]; innovVelSumSq += sq(innovation); varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; varVelSum += varInnovVelPos[i]; } velTestRatio = innovVelSumSq / (varVelSum * sq(MAX(0.01 * (ftype)frontend->_gpsVelInnovGate, 1.0))); if (velTestRatio < 1.0) { velCheckPassed = true; lastVelPassTime_ms = imuSampleTime_ms; } else if (frontend->_gpsGlitchRadiusMax <= 0) { // handle special case where the glitch radius parameter has been set to a non-positive number // to indicate that large velocity and position innovations should be clipped instead of rejected. posCheckPassed = true; lastPosPassTime_ms = imuSampleTime_ms; const ftype scaleFactor = 1.0F / sqrtF(velTestRatio); for (uint8_t i = 0; i<=imax; i++) { innovVelPos[i] *= scaleFactor; } innovVelPos[4] *= scaleFactor; velCheckPassed = true; lastVelPassTime_ms = imuSampleTime_ms; } // Use velocity data if healthy, timed out or when IMU fault has been detected // Always fuse data if bad IMU to prevent aliasing and clipping pulling the state estimate away // from the measurement un-opposed if test threshold is exceeded. if (velCheckPassed || velTimeout || badIMUdata) { // If we are doing full aiding and velocity fusion times out, reset to the external sensor velocity if (PV_AidingMode == AID_ABSOLUTE && velTimeout) { ResetVelocity(resetDataSource::DEFAULT); // Don't fuse the same data we have used to reset states. fuseVelData = false; // Reset the normalised innovation to avoid failing the bad fusion tests velTestRatio = 0.0f; } } else { fuseVelData = false; } } // Test height measurements if (fuseHgtData) { // Calculate height innovations innovVelPos[5] = stateStruct.position.z - velPosObs[5]; varInnovVelPos[5] = P[9][9] + R_OBS_DATA_CHECKS[5]; // Calculate the innovation consistency test ratio hgtTestRatio = sq(innovVelPos[5]) / (sq(MAX(0.01 * (ftype)frontend->_hgtInnovGate, 1.0)) * varInnovVelPos[5]); // When on ground we accept a larger test ratio to allow the filter to handle large switch on IMU // bias errors without rejecting the height sensor. const float maxTestRatio = (PV_AidingMode == AID_NONE && onGround)? 3.0f : 1.0f; if (hgtTestRatio < maxTestRatio) { hgtCheckPassed = true; lastHgtPassTime_ms = imuSampleTime_ms; } else if ((frontend->_gpsGlitchRadiusMax <= 0) && (activeHgtSource == AP_NavEKF_Source::SourceZ::GPS)) { // handle special case where the glitch radius parameter has been set to a non-positive number // to indicate that large GPS velocity and position innovations should be clipped instead of rejected. posCheckPassed = true; lastPosPassTime_ms = imuSampleTime_ms; const ftype scaleFactor = 1.0F / sqrtF(hgtTestRatio); innovVelPos[5] *= scaleFactor; hgtCheckPassed = true; lastHgtPassTime_ms = imuSampleTime_ms; } // Use height data if innovation check passed or timed out or if bad IMU data // Always fuse data if bad IMU to prevent aliasing and clipping pulling the state estimate away // from the measurement un-opposed if test threshold is exceeded. if (hgtCheckPassed || hgtTimeout || badIMUdata) { // Calculate a filtered value to be used by pre-flight health checks // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution if (onGround) { ftype dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms) * 1.0e-3; const ftype hgtInnovFiltTC = 2.0; ftype alpha = constrain_ftype(dtBaro/(dtBaro+hgtInnovFiltTC), 0.0, 1.0); hgtInnovFiltState += (innovVelPos[5] - hgtInnovFiltState)*alpha; } else { hgtInnovFiltState = 0.0f; } if (hgtTimeout) { ResetHeight(); // Don't fuse the same data we have used to reset states. fuseHgtData = false; } } else { fuseHgtData = false; } } // set range for sequential fusion of velocity and position measurements depending on which data is available and its health if (fuseVelData) { fuseData[0] = true; fuseData[1] = true; if (useGpsVertVel || useExtNavVel) { fuseData[2] = true; } } if (fusePosData) { fuseData[3] = true; fuseData[4] = true; } if (fuseHgtData) { fuseData[5] = true; } // fuse measurements sequentially for (obsIndex=0; obsIndex<=5; obsIndex++) { if (fuseData[obsIndex]) { stateIndex = 4 + obsIndex; // calculate the measurement innovation, using states from a different time coordinate if fusing height data // adjust scaling on GPS measurement noise variances if not enough satellites if (obsIndex <= 2) { innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - velPosObs[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 3 || obsIndex == 4) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - velPosObs[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 5) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - velPosObs[obsIndex]; const ftype gndMaxBaroErr = MAX(frontend->_baroGndEffectDeadZone, 0.0); const ftype gndBaroInnovFloor = -0.5; if ((dal.get_touchdown_expected() || dal.get_takeoff_expected()) && activeHgtSource == AP_NavEKF_Source::SourceZ::BARO) { // when baro positive pressure error due to ground effect is expected, // floor the barometer innovation at gndBaroInnovFloor // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr // this function looks like this: // |/ //---------|--------- // ____/| // / | // / | innovVelPos[5] += constrain_ftype(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); } } // calculate the Kalman gain and calculate innovation variances varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; SK = 1.0f/varInnovVelPos[obsIndex]; for (uint8_t i= 0; i<=9; i++) { Kfusion[i] = P[i][stateIndex]*SK; } // inhibit delta angle bias state estimation by setting Kalman gains to zero if (!inhibitDelAngBiasStates) { for (uint8_t i = 10; i<=12; i++) { // Don't try to learn gyro bias if not aiding and the axis is // less than 45 degrees from vertical because the bias is poorly observable bool poorObservability = false; if (PV_AidingMode == AID_NONE) { const uint8_t axisIndex = i - 10; if (axisIndex == 0) { poorObservability = fabsF(prevTnb.a.z) > M_SQRT1_2; } else if (axisIndex == 1) { poorObservability = fabsF(prevTnb.b.z) > M_SQRT1_2; } else { poorObservability = fabsF(prevTnb.c.z) > M_SQRT1_2; } } if (poorObservability) { Kfusion[i] = 0.0; } else { Kfusion[i] = P[i][stateIndex]*SK; } } } else { // zero indexes 10 to 12 zero_range(&Kfusion[0], 10, 12); } // Inhibit delta velocity bias state estimation by setting Kalman gains to zero // Don't use 'fake' horizontal measurements used to constrain attitude drift during // periods of non-aiding to learn bias as these can give incorrect esitmates. const bool horizInhibit = PV_AidingMode == AID_NONE && obsIndex != 2 && obsIndex != 5; if (!horizInhibit && !inhibitDelVelBiasStates && !badIMUdata) { for (uint8_t i = 13; i<=15; i++) { if (!dvelBiasAxisInhibit[i-13]) { Kfusion[i] = P[i][stateIndex]*SK; } else { Kfusion[i] = 0.0f; } } } else { // zero indexes 13 to 15 zero_range(&Kfusion[0], 13, 15); } // inhibit magnetic field state estimation by setting Kalman gains to zero if (!inhibitMagStates) { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = P[i][stateIndex]*SK; } } else { // zero indexes 16 to 21 zero_range(&Kfusion[0], 16, 21); } // inhibit wind state estimation by setting Kalman gains to zero if (!inhibitWindStates) { Kfusion[22] = P[22][stateIndex]*SK; Kfusion[23] = P[23][stateIndex]*SK; } else { // zero indexes 22 to 23 zero_range(&Kfusion[0], 22, 23); } // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations // this is a numerically optimised implementation of standard equation P = (I - K*H)*P; for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { KHP[i][j] = Kfusion[i] * P[stateIndex][j]; } } // Check that we are not going to drive any variances negative and skip the update if so bool healthyFusion = true; for (uint8_t i= 0; i<=stateIndexLim; i++) { if (KHP[i][i] > P[i][i]) { healthyFusion = false; } } if (healthyFusion) { // update the covariance matrix for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning. ForceSymmetry(); ConstrainVariances(); // update states and renormalise the quaternions for (uint8_t i = 0; i<=stateIndexLim; i++) { statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; } stateStruct.quat.normalize(); // record good fusion status if (obsIndex == 0) { faultStatus.bad_nvel = false; } else if (obsIndex == 1) { faultStatus.bad_evel = false; } else if (obsIndex == 2) { faultStatus.bad_dvel = false; } else if (obsIndex == 3) { faultStatus.bad_npos = false; } else if (obsIndex == 4) { faultStatus.bad_epos = false; } else if (obsIndex == 5) { faultStatus.bad_dpos = false; } } else { // record bad fusion status if (obsIndex == 0) { faultStatus.bad_nvel = true; } else if (obsIndex == 1) { faultStatus.bad_evel = true; } else if (obsIndex == 2) { faultStatus.bad_dvel = true; } else if (obsIndex == 3) { faultStatus.bad_npos = true; } else if (obsIndex == 4) { faultStatus.bad_epos = true; } else if (obsIndex == 5) { faultStatus.bad_dpos = true; } } } } } } /******************************************************** * MISC FUNCTIONS * ********************************************************/ // select the height measurement to be fused from the available baro, range finder and GPS sources void NavEKF3_core::selectHeightForFusion() { // Read range finder data and check for new data in the buffer // This data is used by both height and optical flow fusion processing readRangeFinder(); rangeDataToFuse = storedRange.recall(rangeDataDelayed,imuDataDelayed.time_ms); // correct range data for the body frame position offset relative to the IMU // the corrected reading is the reading that would have been taken if the sensor was // co-located with the IMU const auto *_rng = dal.rangefinder(); if (_rng && rangeDataToFuse) { auto *sensor = _rng->get_backend(rangeDataDelayed.sensor_idx); if (sensor != nullptr) { Vector3F posOffsetBody = sensor->get_pos_offset().toftype() - accelPosOffset; if (!posOffsetBody.is_zero()) { Vector3F posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); rangeDataDelayed.rng += posOffsetEarth.z / prevTnb.c.z; } } } // read baro height data from the sensor and check for new data in the buffer readBaroData(); baroDataToFuse = storedBaro.recall(baroDataDelayed, imuDataDelayed.time_ms); bool rangeFinderDataIsFresh = (imuSampleTime_ms - rngValidMeaTime_ms < 500); #if EK3_FEATURE_EXTERNAL_NAV const bool extNavDataIsFresh = (imuSampleTime_ms - extNavMeasTime_ms < 500); #endif // select height source if ((frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::RANGEFINDER) && _rng && rangeFinderDataIsFresh) { // user has specified the range finder as a primary height source activeHgtSource = AP_NavEKF_Source::SourceZ::RANGEFINDER; } else if ((frontend->_useRngSwHgt > 0) && ((frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::BARO) || (frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::GPS)) && _rng && rangeFinderDataIsFresh) { // determine if we are above or below the height switch region ftype rangeMaxUse = 1e-4 * (ftype)_rng->max_distance_cm_orient(ROTATION_PITCH_270) * (ftype)frontend->_useRngSwHgt; bool aboveUpperSwHgt = (terrainState - stateStruct.position.z) > rangeMaxUse; bool belowLowerSwHgt = ((terrainState - stateStruct.position.z) < 0.7f * rangeMaxUse) && (imuSampleTime_ms - gndHgtValidTime_ms < 1000); // If the terrain height is consistent and we are moving slowly, then it can be // used as a height reference in combination with a range finder // apply a hysteresis to the speed check to prevent rapid switching bool dontTrustTerrain, trustTerrain; if (filterStatus.flags.horiz_vel) { // We can use the velocity estimate ftype horizSpeed = stateStruct.velocity.xy().length(); dontTrustTerrain = (horizSpeed > frontend->_useRngSwSpd) || !terrainHgtStable; ftype trust_spd_trigger = MAX((frontend->_useRngSwSpd - 1.0f),(frontend->_useRngSwSpd * 0.5f)); trustTerrain = (horizSpeed < trust_spd_trigger) && terrainHgtStable; } else { // We can't use the velocity estimate dontTrustTerrain = !terrainHgtStable; trustTerrain = terrainHgtStable; } /* * Switch between range finder and primary height source using height above ground and speed thresholds with * hysteresis to avoid rapid switching. Using range finder for height requires a consistent terrain height * which cannot be assumed if the vehicle is moving horizontally. */ if ((aboveUpperSwHgt || dontTrustTerrain) && (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER)) { // cannot trust terrain or range finder so stop using range finder height if (frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::BARO) { activeHgtSource = AP_NavEKF_Source::SourceZ::BARO; } else if (frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::GPS) { activeHgtSource = AP_NavEKF_Source::SourceZ::GPS; } } else if (belowLowerSwHgt && trustTerrain && (prevTnb.c.z >= 0.7f)) { // reliable terrain and range finder so start using range finder height activeHgtSource = AP_NavEKF_Source::SourceZ::RANGEFINDER; } } else if (frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::BARO) { activeHgtSource = AP_NavEKF_Source::SourceZ::BARO; } else if ((frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::GPS) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) < 500) && validOrigin && gpsAccuracyGood) { activeHgtSource = AP_NavEKF_Source::SourceZ::GPS; #if EK3_FEATURE_BEACON_FUSION } else if ((frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::BEACON) && validOrigin && rngBcn.goodToAlign) { activeHgtSource = AP_NavEKF_Source::SourceZ::BEACON; #endif #if EK3_FEATURE_EXTERNAL_NAV } else if ((frontend->sources.getPosZSource() == AP_NavEKF_Source::SourceZ::EXTNAV) && extNavDataIsFresh) { activeHgtSource = AP_NavEKF_Source::SourceZ::EXTNAV; #endif } // Use Baro alt as a fallback if we lose range finder, GPS, external nav or Beacon bool lostRngHgt = ((activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER) && !rangeFinderDataIsFresh); bool lostGpsHgt = ((activeHgtSource == AP_NavEKF_Source::SourceZ::GPS) && ((imuSampleTime_ms - lastTimeGpsReceived_ms) > 2000 || !gpsAccuracyGoodForAltitude)); #if EK3_FEATURE_BEACON_FUSION bool lostRngBcnHgt = ((activeHgtSource == AP_NavEKF_Source::SourceZ::BEACON) && ((imuSampleTime_ms - rngBcn.dataDelayed.time_ms) > 2000)); #endif bool fallback_to_baro = lostRngHgt || lostGpsHgt #if EK3_FEATURE_BEACON_FUSION || lostRngBcnHgt #endif ; #if EK3_FEATURE_EXTERNAL_NAV bool lostExtNavHgt = ((activeHgtSource == AP_NavEKF_Source::SourceZ::EXTNAV) && !extNavDataIsFresh); fallback_to_baro |= lostExtNavHgt; #endif if (fallback_to_baro) { activeHgtSource = AP_NavEKF_Source::SourceZ::BARO; } // if there is new baro data to fuse, calculate filtered baro data required by other processes if (baroDataToFuse) { // calculate offset to baro data that enables us to switch to Baro height use during operation if (activeHgtSource != AP_NavEKF_Source::SourceZ::BARO) { calcFiltBaroOffset(); } // filtered baro data used to provide a reference for takeoff // it is is reset to last height measurement on disarming in performArmingChecks() if (!dal.get_takeoff_expected()) { const ftype gndHgtFiltTC = 0.5; const ftype dtBaro = frontend->hgtAvg_ms*1.0e-3; ftype alpha = constrain_ftype(dtBaro / (dtBaro+gndHgtFiltTC),0.0,1.0); meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha; } } // If we are not using GPS as the primary height sensor, correct EKF origin height so that // combined local NED position height and origin height remains consistent with the GPS altitude // This also enables the GPS height to be used as a backup height source if (gpsDataToFuse && (((frontend->_originHgtMode & (1 << 0)) && (activeHgtSource == AP_NavEKF_Source::SourceZ::BARO)) || ((frontend->_originHgtMode & (1 << 1)) && (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER))) ) { correctEkfOriginHeight(); } // Select the height measurement source #if EK3_FEATURE_EXTERNAL_NAV if (extNavDataToFuse && (activeHgtSource == AP_NavEKF_Source::SourceZ::EXTNAV)) { hgtMea = -extNavDataDelayed.pos.z; velPosObs[5] = -hgtMea; posDownObsNoise = sq(constrain_ftype(extNavDataDelayed.posErr, 0.1f, 10.0f)); fuseHgtData = true; } else #endif // EK3_FEATURE_EXTERNAL_NAV if (rangeDataToFuse && (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER)) { // using range finder data // correct for tilt using a flat earth model if (prevTnb.c.z >= 0.7) { // calculate height above ground hgtMea = MAX(rangeDataDelayed.rng * prevTnb.c.z, rngOnGnd); // correct for terrain position relative to datum hgtMea -= terrainState; velPosObs[5] = -hgtMea; // enable fusion fuseHgtData = true; // set the observation noise posDownObsNoise = sq(constrain_ftype(frontend->_rngNoise, 0.1f, 10.0f)); // add uncertainty created by terrain gradient and vehicle tilt posDownObsNoise += sq(rangeDataDelayed.rng * frontend->_terrGradMax) * MAX(0.0f , (1.0f - sq(prevTnb.c.z))); } else { // disable fusion if tilted too far fuseHgtData = false; } } else if (gpsDataToFuse && (activeHgtSource == AP_NavEKF_Source::SourceZ::GPS)) { // using GPS data hgtMea = gpsDataDelayed.hgt; velPosObs[5] = -hgtMea; // enable fusion fuseHgtData = true; // set the observation noise using receiver reported accuracy or the horizontal noise scaled for typical VDOP/HDOP ratio if (gpsHgtAccuracy > 0.0f) { posDownObsNoise = sq(constrain_ftype(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise, 100.0f)); } else { posDownObsNoise = sq(constrain_ftype(1.5f * frontend->_gpsHorizPosNoise, 0.1f, 10.0f)); } } else if (baroDataToFuse && (activeHgtSource == AP_NavEKF_Source::SourceZ::BARO)) { // using Baro data hgtMea = baroDataDelayed.hgt - baroHgtOffset; // enable fusion fuseHgtData = true; // set the observation noise posDownObsNoise = sq(constrain_ftype(frontend->_baroAltNoise, 0.1f, 10.0f)); // reduce weighting (increase observation noise) on baro if we are likely to be experiencing rotor wash ground interaction if (dal.get_takeoff_expected() || dal.get_touchdown_expected()) { posDownObsNoise *= frontend->gndEffectBaroScaler; } velPosObs[5] = -hgtMea; } else { fuseHgtData = false; } // detect changes in source and reset height if ((activeHgtSource != prevHgtSource) && fuseHgtData) { prevHgtSource = activeHgtSource; ResetPositionD(-hgtMea); } // If we haven't fused height data for a while or have bad IMU data, then declare the height data as being timed out // set height timeout period based on whether we have vertical GPS velocity available to constrain drift hgtRetryTime_ms = ((useGpsVertVel || useExtNavVel) && !velTimeout) ? frontend->hgtRetryTimeMode0_ms : frontend->hgtRetryTimeMode12_ms; if (imuSampleTime_ms - lastHgtPassTime_ms > hgtRetryTime_ms || (badIMUdata && (imuSampleTime_ms - goodIMUdata_ms > BAD_IMU_DATA_TIMEOUT_MS))) { hgtTimeout = true; } else { hgtTimeout = false; } } #if EK3_FEATURE_BODY_ODOM /* * Fuse body frame velocity measurements using explicit algebraic equations generated with Matlab symbolic toolbox. * The script file used to generate these and other equations in this filter can be found here: * https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m */ void NavEKF3_core::FuseBodyVel() { Vector24 H_VEL; Vector3F bodyVelPred; // Copy required states to local variable names ftype q0 = stateStruct.quat[0]; ftype q1 = stateStruct.quat[1]; ftype q2 = stateStruct.quat[2]; ftype q3 = stateStruct.quat[3]; ftype vn = stateStruct.velocity.x; ftype ve = stateStruct.velocity.y; ftype vd = stateStruct.velocity.z; // Fuse X, Y and Z axis measurements sequentially assuming observation errors are uncorrelated for (uint8_t obsIndex=0; obsIndex<=2; obsIndex++) { // calculate relative velocity in sensor frame including the relative motion due to rotation bodyVelPred = (prevTnb * stateStruct.velocity); // correct sensor offset body frame position offset relative to IMU Vector3F posOffsetBody = bodyOdmDataDelayed.body_offset - accelPosOffset; // correct prediction for relative motion due to rotation // note - % operator overloaded for cross product if (imuDataDelayed.delAngDT > 0.001f) { bodyVelPred += (imuDataDelayed.delAng * (1.0f / imuDataDelayed.delAngDT)) % posOffsetBody; } // calculate observation jacobians and Kalman gains if (obsIndex == 0) { // calculate X axis observation Jacobian H_VEL[0] = q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f; H_VEL[1] = q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f; H_VEL[2] = q0*vd*-2.0f+q1*ve*2.0f-q2*vn*2.0f; H_VEL[3] = q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f; H_VEL[4] = q0*q0+q1*q1-q2*q2-q3*q3; H_VEL[5] = q0*q3*2.0f+q1*q2*2.0f; H_VEL[6] = q0*q2*-2.0f+q1*q3*2.0f; for (uint8_t index = 7; index < 24; index++) { H_VEL[index] = 0.0f; } // calculate intermediate expressions for X axis Kalman gains ftype R_VEL = sq(bodyOdmDataDelayed.velErr); ftype t2 = q0*q3*2.0f; ftype t3 = q1*q2*2.0f; ftype t4 = t2+t3; ftype t5 = q0*q0; ftype t6 = q1*q1; ftype t7 = q2*q2; ftype t8 = q3*q3; ftype t9 = t5+t6-t7-t8; ftype t10 = q0*q2*2.0f; ftype t25 = q1*q3*2.0f; ftype t11 = t10-t25; ftype t12 = q3*ve*2.0f; ftype t13 = q0*vn*2.0f; ftype t26 = q2*vd*2.0f; ftype t14 = t12+t13-t26; ftype t15 = q3*vd*2.0f; ftype t16 = q2*ve*2.0f; ftype t17 = q1*vn*2.0f; ftype t18 = t15+t16+t17; ftype t19 = q0*vd*2.0f; ftype t20 = q2*vn*2.0f; ftype t27 = q1*ve*2.0f; ftype t21 = t19+t20-t27; ftype t22 = q1*vd*2.0f; ftype t23 = q0*ve*2.0f; ftype t28 = q3*vn*2.0f; ftype t24 = t22+t23-t28; ftype t29 = P[0][0]*t14; ftype t30 = P[1][1]*t18; ftype t31 = P[4][5]*t9; ftype t32 = P[5][5]*t4; ftype t33 = P[0][5]*t14; ftype t34 = P[1][5]*t18; ftype t35 = P[3][5]*t24; ftype t79 = P[6][5]*t11; ftype t80 = P[2][5]*t21; ftype t36 = t31+t32+t33+t34+t35-t79-t80; ftype t37 = t4*t36; ftype t38 = P[4][6]*t9; ftype t39 = P[5][6]*t4; ftype t40 = P[0][6]*t14; ftype t41 = P[1][6]*t18; ftype t42 = P[3][6]*t24; ftype t81 = P[6][6]*t11; ftype t82 = P[2][6]*t21; ftype t43 = t38+t39+t40+t41+t42-t81-t82; ftype t44 = P[4][0]*t9; ftype t45 = P[5][0]*t4; ftype t46 = P[1][0]*t18; ftype t47 = P[3][0]*t24; ftype t84 = P[6][0]*t11; ftype t85 = P[2][0]*t21; ftype t48 = t29+t44+t45+t46+t47-t84-t85; ftype t49 = t14*t48; ftype t50 = P[4][1]*t9; ftype t51 = P[5][1]*t4; ftype t52 = P[0][1]*t14; ftype t53 = P[3][1]*t24; ftype t86 = P[6][1]*t11; ftype t87 = P[2][1]*t21; ftype t54 = t30+t50+t51+t52+t53-t86-t87; ftype t55 = t18*t54; ftype t56 = P[4][2]*t9; ftype t57 = P[5][2]*t4; ftype t58 = P[0][2]*t14; ftype t59 = P[1][2]*t18; ftype t60 = P[3][2]*t24; ftype t78 = P[2][2]*t21; ftype t88 = P[6][2]*t11; ftype t61 = t56+t57+t58+t59+t60-t78-t88; ftype t62 = P[4][3]*t9; ftype t63 = P[5][3]*t4; ftype t64 = P[0][3]*t14; ftype t65 = P[1][3]*t18; ftype t66 = P[3][3]*t24; ftype t90 = P[6][3]*t11; ftype t91 = P[2][3]*t21; ftype t67 = t62+t63+t64+t65+t66-t90-t91; ftype t68 = t24*t67; ftype t69 = P[4][4]*t9; ftype t70 = P[5][4]*t4; ftype t71 = P[0][4]*t14; ftype t72 = P[1][4]*t18; ftype t73 = P[3][4]*t24; ftype t92 = P[6][4]*t11; ftype t93 = P[2][4]*t21; ftype t74 = t69+t70+t71+t72+t73-t92-t93; ftype t75 = t9*t74; ftype t83 = t11*t43; ftype t89 = t21*t61; ftype t76 = R_VEL+t37+t49+t55+t68+t75-t83-t89; ftype t77; // calculate innovation variance for X axis observation and protect against a badly conditioned calculation if (t76 > R_VEL) { t77 = 1.0f/t76; faultStatus.bad_xvel = false; } else { t76 = R_VEL; t77 = 1.0f/R_VEL; faultStatus.bad_xvel = true; return; } varInnovBodyVel[0] = t76; // calculate innovation for X axis observation innovBodyVel[0] = bodyVelPred.x - bodyOdmDataDelayed.vel.x; // calculate Kalman gains for X-axis observation Kfusion[0] = t77*(t29+P[0][5]*t4+P[0][4]*t9-P[0][6]*t11+P[0][1]*t18-P[0][2]*t21+P[0][3]*t24); Kfusion[1] = t77*(t30+P[1][5]*t4+P[1][4]*t9+P[1][0]*t14-P[1][6]*t11-P[1][2]*t21+P[1][3]*t24); Kfusion[2] = t77*(-t78+P[2][5]*t4+P[2][4]*t9+P[2][0]*t14-P[2][6]*t11+P[2][1]*t18+P[2][3]*t24); Kfusion[3] = t77*(t66+P[3][5]*t4+P[3][4]*t9+P[3][0]*t14-P[3][6]*t11+P[3][1]*t18-P[3][2]*t21); Kfusion[4] = t77*(t69+P[4][5]*t4+P[4][0]*t14-P[4][6]*t11+P[4][1]*t18-P[4][2]*t21+P[4][3]*t24); Kfusion[5] = t77*(t32+P[5][4]*t9+P[5][0]*t14-P[5][6]*t11+P[5][1]*t18-P[5][2]*t21+P[5][3]*t24); Kfusion[6] = t77*(-t81+P[6][5]*t4+P[6][4]*t9+P[6][0]*t14+P[6][1]*t18-P[6][2]*t21+P[6][3]*t24); Kfusion[7] = t77*(P[7][5]*t4+P[7][4]*t9+P[7][0]*t14-P[7][6]*t11+P[7][1]*t18-P[7][2]*t21+P[7][3]*t24); Kfusion[8] = t77*(P[8][5]*t4+P[8][4]*t9+P[8][0]*t14-P[8][6]*t11+P[8][1]*t18-P[8][2]*t21+P[8][3]*t24); Kfusion[9] = t77*(P[9][5]*t4+P[9][4]*t9+P[9][0]*t14-P[9][6]*t11+P[9][1]*t18-P[9][2]*t21+P[9][3]*t24); if (!inhibitDelAngBiasStates) { Kfusion[10] = t77*(P[10][5]*t4+P[10][4]*t9+P[10][0]*t14-P[10][6]*t11+P[10][1]*t18-P[10][2]*t21+P[10][3]*t24); Kfusion[11] = t77*(P[11][5]*t4+P[11][4]*t9+P[11][0]*t14-P[11][6]*t11+P[11][1]*t18-P[11][2]*t21+P[11][3]*t24); Kfusion[12] = t77*(P[12][5]*t4+P[12][4]*t9+P[12][0]*t14-P[12][6]*t11+P[12][1]*t18-P[12][2]*t21+P[12][3]*t24); } else { // zero indexes 10 to 12 zero_range(&Kfusion[0], 10, 12); } if (!inhibitDelVelBiasStates && !badIMUdata) { for (uint8_t index = 0; index < 3; index++) { const uint8_t stateIndex = index + 13; if (!dvelBiasAxisInhibit[index]) { Kfusion[stateIndex] = t77*(P[stateIndex][5]*t4+P[stateIndex][4]*t9+P[stateIndex][0]*t14-P[stateIndex][6]*t11+P[stateIndex][1]*t18-P[stateIndex][2]*t21+P[stateIndex][3]*t24); } else { Kfusion[stateIndex] = 0.0f; } } } else { // zero indexes 13 to 15 = 3 zero_range(&Kfusion[0], 13, 15); } if (!inhibitMagStates) { Kfusion[16] = t77*(P[16][5]*t4+P[16][4]*t9+P[16][0]*t14-P[16][6]*t11+P[16][1]*t18-P[16][2]*t21+P[16][3]*t24); Kfusion[17] = t77*(P[17][5]*t4+P[17][4]*t9+P[17][0]*t14-P[17][6]*t11+P[17][1]*t18-P[17][2]*t21+P[17][3]*t24); Kfusion[18] = t77*(P[18][5]*t4+P[18][4]*t9+P[18][0]*t14-P[18][6]*t11+P[18][1]*t18-P[18][2]*t21+P[18][3]*t24); Kfusion[19] = t77*(P[19][5]*t4+P[19][4]*t9+P[19][0]*t14-P[19][6]*t11+P[19][1]*t18-P[19][2]*t21+P[19][3]*t24); Kfusion[20] = t77*(P[20][5]*t4+P[20][4]*t9+P[20][0]*t14-P[20][6]*t11+P[20][1]*t18-P[20][2]*t21+P[20][3]*t24); Kfusion[21] = t77*(P[21][5]*t4+P[21][4]*t9+P[21][0]*t14-P[21][6]*t11+P[21][1]*t18-P[21][2]*t21+P[21][3]*t24); } else { // zero indexes 16 to 21 zero_range(&Kfusion[0], 16, 21); } if (!inhibitWindStates) { Kfusion[22] = t77*(P[22][5]*t4+P[22][4]*t9+P[22][0]*t14-P[22][6]*t11+P[22][1]*t18-P[22][2]*t21+P[22][3]*t24); Kfusion[23] = t77*(P[23][5]*t4+P[23][4]*t9+P[23][0]*t14-P[23][6]*t11+P[23][1]*t18-P[23][2]*t21+P[23][3]*t24); } else { // zero indexes 22 to 23 zero_range(&Kfusion[0], 22, 23); } } else if (obsIndex == 1) { // calculate Y axis observation Jacobian H_VEL[0] = q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f; H_VEL[1] = q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f; H_VEL[2] = q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f; H_VEL[3] = q2*vd*2.0f-q3*ve*2.0f-q0*vn*2.0f; H_VEL[4] = q0*q3*-2.0f+q1*q2*2.0f; H_VEL[5] = q0*q0-q1*q1+q2*q2-q3*q3; H_VEL[6] = q0*q1*2.0f+q2*q3*2.0f; for (uint8_t index = 7; index < 24; index++) { H_VEL[index] = 0.0f; } // calculate intermediate expressions for Y axis Kalman gains ftype R_VEL = sq(bodyOdmDataDelayed.velErr); ftype t2 = q0*q3*2.0f; ftype t9 = q1*q2*2.0f; ftype t3 = t2-t9; ftype t4 = q0*q0; ftype t5 = q1*q1; ftype t6 = q2*q2; ftype t7 = q3*q3; ftype t8 = t4-t5+t6-t7; ftype t10 = q0*q1*2.0f; ftype t11 = q2*q3*2.0f; ftype t12 = t10+t11; ftype t13 = q1*vd*2.0f; ftype t14 = q0*ve*2.0f; ftype t26 = q3*vn*2.0f; ftype t15 = t13+t14-t26; ftype t16 = q0*vd*2.0f; ftype t17 = q2*vn*2.0f; ftype t27 = q1*ve*2.0f; ftype t18 = t16+t17-t27; ftype t19 = q3*vd*2.0f; ftype t20 = q2*ve*2.0f; ftype t21 = q1*vn*2.0f; ftype t22 = t19+t20+t21; ftype t23 = q3*ve*2.0f; ftype t24 = q0*vn*2.0f; ftype t28 = q2*vd*2.0f; ftype t25 = t23+t24-t28; ftype t29 = P[0][0]*t15; ftype t30 = P[1][1]*t18; ftype t31 = P[5][4]*t8; ftype t32 = P[6][4]*t12; ftype t33 = P[0][4]*t15; ftype t34 = P[1][4]*t18; ftype t35 = P[2][4]*t22; ftype t78 = P[4][4]*t3; ftype t79 = P[3][4]*t25; ftype t36 = t31+t32+t33+t34+t35-t78-t79; ftype t37 = P[5][6]*t8; ftype t38 = P[6][6]*t12; ftype t39 = P[0][6]*t15; ftype t40 = P[1][6]*t18; ftype t41 = P[2][6]*t22; ftype t81 = P[4][6]*t3; ftype t82 = P[3][6]*t25; ftype t42 = t37+t38+t39+t40+t41-t81-t82; ftype t43 = t12*t42; ftype t44 = P[5][0]*t8; ftype t45 = P[6][0]*t12; ftype t46 = P[1][0]*t18; ftype t47 = P[2][0]*t22; ftype t83 = P[4][0]*t3; ftype t84 = P[3][0]*t25; ftype t48 = t29+t44+t45+t46+t47-t83-t84; ftype t49 = t15*t48; ftype t50 = P[5][1]*t8; ftype t51 = P[6][1]*t12; ftype t52 = P[0][1]*t15; ftype t53 = P[2][1]*t22; ftype t85 = P[4][1]*t3; ftype t86 = P[3][1]*t25; ftype t54 = t30+t50+t51+t52+t53-t85-t86; ftype t55 = t18*t54; ftype t56 = P[5][2]*t8; ftype t57 = P[6][2]*t12; ftype t58 = P[0][2]*t15; ftype t59 = P[1][2]*t18; ftype t60 = P[2][2]*t22; ftype t87 = P[4][2]*t3; ftype t88 = P[3][2]*t25; ftype t61 = t56+t57+t58+t59+t60-t87-t88; ftype t62 = t22*t61; ftype t63 = P[5][3]*t8; ftype t64 = P[6][3]*t12; ftype t65 = P[0][3]*t15; ftype t66 = P[1][3]*t18; ftype t67 = P[2][3]*t22; ftype t89 = P[4][3]*t3; ftype t90 = P[3][3]*t25; ftype t68 = t63+t64+t65+t66+t67-t89-t90; ftype t69 = P[5][5]*t8; ftype t70 = P[6][5]*t12; ftype t71 = P[0][5]*t15; ftype t72 = P[1][5]*t18; ftype t73 = P[2][5]*t22; ftype t92 = P[4][5]*t3; ftype t93 = P[3][5]*t25; ftype t74 = t69+t70+t71+t72+t73-t92-t93; ftype t75 = t8*t74; ftype t80 = t3*t36; ftype t91 = t25*t68; ftype t76 = R_VEL+t43+t49+t55+t62+t75-t80-t91; ftype t77; // calculate innovation variance for Y axis observation and protect against a badly conditioned calculation if (t76 > R_VEL) { t77 = 1.0f/t76; faultStatus.bad_yvel = false; } else { t76 = R_VEL; t77 = 1.0f/R_VEL; faultStatus.bad_yvel = true; return; } varInnovBodyVel[1] = t76; // calculate innovation for Y axis observation innovBodyVel[1] = bodyVelPred.y - bodyOdmDataDelayed.vel.y; // calculate Kalman gains for Y-axis observation Kfusion[0] = t77*(t29-P[0][4]*t3+P[0][5]*t8+P[0][6]*t12+P[0][1]*t18+P[0][2]*t22-P[0][3]*t25); Kfusion[1] = t77*(t30-P[1][4]*t3+P[1][5]*t8+P[1][0]*t15+P[1][6]*t12+P[1][2]*t22-P[1][3]*t25); Kfusion[2] = t77*(t60-P[2][4]*t3+P[2][5]*t8+P[2][0]*t15+P[2][6]*t12+P[2][1]*t18-P[2][3]*t25); Kfusion[3] = t77*(-t90-P[3][4]*t3+P[3][5]*t8+P[3][0]*t15+P[3][6]*t12+P[3][1]*t18+P[3][2]*t22); Kfusion[4] = t77*(-t78+P[4][5]*t8+P[4][0]*t15+P[4][6]*t12+P[4][1]*t18+P[4][2]*t22-P[4][3]*t25); Kfusion[5] = t77*(t69-P[5][4]*t3+P[5][0]*t15+P[5][6]*t12+P[5][1]*t18+P[5][2]*t22-P[5][3]*t25); Kfusion[6] = t77*(t38-P[6][4]*t3+P[6][5]*t8+P[6][0]*t15+P[6][1]*t18+P[6][2]*t22-P[6][3]*t25); Kfusion[7] = t77*(-P[7][4]*t3+P[7][5]*t8+P[7][0]*t15+P[7][6]*t12+P[7][1]*t18+P[7][2]*t22-P[7][3]*t25); Kfusion[8] = t77*(-P[8][4]*t3+P[8][5]*t8+P[8][0]*t15+P[8][6]*t12+P[8][1]*t18+P[8][2]*t22-P[8][3]*t25); Kfusion[9] = t77*(-P[9][4]*t3+P[9][5]*t8+P[9][0]*t15+P[9][6]*t12+P[9][1]*t18+P[9][2]*t22-P[9][3]*t25); if (!inhibitDelAngBiasStates) { Kfusion[10] = t77*(-P[10][4]*t3+P[10][5]*t8+P[10][0]*t15+P[10][6]*t12+P[10][1]*t18+P[10][2]*t22-P[10][3]*t25); Kfusion[11] = t77*(-P[11][4]*t3+P[11][5]*t8+P[11][0]*t15+P[11][6]*t12+P[11][1]*t18+P[11][2]*t22-P[11][3]*t25); Kfusion[12] = t77*(-P[12][4]*t3+P[12][5]*t8+P[12][0]*t15+P[12][6]*t12+P[12][1]*t18+P[12][2]*t22-P[12][3]*t25); } else { // zero indexes 10 to 12 = 3 zero_range(&Kfusion[0], 10, 12); } if (!inhibitDelVelBiasStates && !badIMUdata) { for (uint8_t index = 0; index < 3; index++) { const uint8_t stateIndex = index + 13; if (!dvelBiasAxisInhibit[index]) { Kfusion[stateIndex] = t77*(-P[stateIndex][4]*t3+P[stateIndex][5]*t8+P[stateIndex][0]*t15+P[stateIndex][6]*t12+P[stateIndex][1]*t18+P[stateIndex][2]*t22-P[stateIndex][3]*t25); } else { Kfusion[stateIndex] = 0.0f; } } } else { // zero indexes 13 to 15 zero_range(&Kfusion[0], 13, 15); } if (!inhibitMagStates) { Kfusion[16] = t77*(-P[16][4]*t3+P[16][5]*t8+P[16][0]*t15+P[16][6]*t12+P[16][1]*t18+P[16][2]*t22-P[16][3]*t25); Kfusion[17] = t77*(-P[17][4]*t3+P[17][5]*t8+P[17][0]*t15+P[17][6]*t12+P[17][1]*t18+P[17][2]*t22-P[17][3]*t25); Kfusion[18] = t77*(-P[18][4]*t3+P[18][5]*t8+P[18][0]*t15+P[18][6]*t12+P[18][1]*t18+P[18][2]*t22-P[18][3]*t25); Kfusion[19] = t77*(-P[19][4]*t3+P[19][5]*t8+P[19][0]*t15+P[19][6]*t12+P[19][1]*t18+P[19][2]*t22-P[19][3]*t25); Kfusion[20] = t77*(-P[20][4]*t3+P[20][5]*t8+P[20][0]*t15+P[20][6]*t12+P[20][1]*t18+P[20][2]*t22-P[20][3]*t25); Kfusion[21] = t77*(-P[21][4]*t3+P[21][5]*t8+P[21][0]*t15+P[21][6]*t12+P[21][1]*t18+P[21][2]*t22-P[21][3]*t25); } else { // zero indexes 16 to 21 zero_range(&Kfusion[0], 16, 21); } if (!inhibitWindStates) { Kfusion[22] = t77*(-P[22][4]*t3+P[22][5]*t8+P[22][0]*t15+P[22][6]*t12+P[22][1]*t18+P[22][2]*t22-P[22][3]*t25); Kfusion[23] = t77*(-P[23][4]*t3+P[23][5]*t8+P[23][0]*t15+P[23][6]*t12+P[23][1]*t18+P[23][2]*t22-P[23][3]*t25); } else { // zero indexes 22 to 23 zero_range(&Kfusion[0], 22, 23); } } else if (obsIndex == 2) { // calculate Z axis observation Jacobian H_VEL[0] = q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f; H_VEL[1] = q1*vd*-2.0f-q0*ve*2.0f+q3*vn*2.0f; H_VEL[2] = q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f; H_VEL[3] = q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f; H_VEL[4] = q0*q2*2.0f+q1*q3*2.0f; H_VEL[5] = q0*q1*-2.0f+q2*q3*2.0f; H_VEL[6] = q0*q0-q1*q1-q2*q2+q3*q3; for (uint8_t index = 7; index < 24; index++) { H_VEL[index] = 0.0f; } // calculate intermediate expressions for Z axis Kalman gains ftype R_VEL = sq(bodyOdmDataDelayed.velErr); ftype t2 = q0*q2*2.0f; ftype t3 = q1*q3*2.0f; ftype t4 = t2+t3; ftype t5 = q0*q0; ftype t6 = q1*q1; ftype t7 = q2*q2; ftype t8 = q3*q3; ftype t9 = t5-t6-t7+t8; ftype t10 = q0*q1*2.0f; ftype t25 = q2*q3*2.0f; ftype t11 = t10-t25; ftype t12 = q0*vd*2.0f; ftype t13 = q2*vn*2.0f; ftype t26 = q1*ve*2.0f; ftype t14 = t12+t13-t26; ftype t15 = q1*vd*2.0f; ftype t16 = q0*ve*2.0f; ftype t27 = q3*vn*2.0f; ftype t17 = t15+t16-t27; ftype t18 = q3*ve*2.0f; ftype t19 = q0*vn*2.0f; ftype t28 = q2*vd*2.0f; ftype t20 = t18+t19-t28; ftype t21 = q3*vd*2.0f; ftype t22 = q2*ve*2.0f; ftype t23 = q1*vn*2.0f; ftype t24 = t21+t22+t23; ftype t29 = P[0][0]*t14; ftype t30 = P[6][4]*t9; ftype t31 = P[4][4]*t4; ftype t32 = P[0][4]*t14; ftype t33 = P[2][4]*t20; ftype t34 = P[3][4]*t24; ftype t78 = P[5][4]*t11; ftype t79 = P[1][4]*t17; ftype t35 = t30+t31+t32+t33+t34-t78-t79; ftype t36 = t4*t35; ftype t37 = P[6][5]*t9; ftype t38 = P[4][5]*t4; ftype t39 = P[0][5]*t14; ftype t40 = P[2][5]*t20; ftype t41 = P[3][5]*t24; ftype t80 = P[5][5]*t11; ftype t81 = P[1][5]*t17; ftype t42 = t37+t38+t39+t40+t41-t80-t81; ftype t43 = P[6][0]*t9; ftype t44 = P[4][0]*t4; ftype t45 = P[2][0]*t20; ftype t46 = P[3][0]*t24; ftype t83 = P[5][0]*t11; ftype t84 = P[1][0]*t17; ftype t47 = t29+t43+t44+t45+t46-t83-t84; ftype t48 = t14*t47; ftype t49 = P[6][1]*t9; ftype t50 = P[4][1]*t4; ftype t51 = P[0][1]*t14; ftype t52 = P[2][1]*t20; ftype t53 = P[3][1]*t24; ftype t85 = P[5][1]*t11; ftype t86 = P[1][1]*t17; ftype t54 = t49+t50+t51+t52+t53-t85-t86; ftype t55 = P[6][2]*t9; ftype t56 = P[4][2]*t4; ftype t57 = P[0][2]*t14; ftype t58 = P[2][2]*t20; ftype t59 = P[3][2]*t24; ftype t88 = P[5][2]*t11; ftype t89 = P[1][2]*t17; ftype t60 = t55+t56+t57+t58+t59-t88-t89; ftype t61 = t20*t60; ftype t62 = P[6][3]*t9; ftype t63 = P[4][3]*t4; ftype t64 = P[0][3]*t14; ftype t65 = P[2][3]*t20; ftype t66 = P[3][3]*t24; ftype t90 = P[5][3]*t11; ftype t91 = P[1][3]*t17; ftype t67 = t62+t63+t64+t65+t66-t90-t91; ftype t68 = t24*t67; ftype t69 = P[6][6]*t9; ftype t70 = P[4][6]*t4; ftype t71 = P[0][6]*t14; ftype t72 = P[2][6]*t20; ftype t73 = P[3][6]*t24; ftype t92 = P[5][6]*t11; ftype t93 = P[1][6]*t17; ftype t74 = t69+t70+t71+t72+t73-t92-t93; ftype t75 = t9*t74; ftype t82 = t11*t42; ftype t87 = t17*t54; ftype t76 = R_VEL+t36+t48+t61+t68+t75-t82-t87; ftype t77; // calculate innovation variance for Z axis observation and protect against a badly conditioned calculation if (t76 > R_VEL) { t77 = 1.0f/t76; faultStatus.bad_zvel = false; } else { t76 = R_VEL; t77 = 1.0f/R_VEL; faultStatus.bad_zvel = true; return; } varInnovBodyVel[2] = t76; // calculate innovation for Z axis observation innovBodyVel[2] = bodyVelPred.z - bodyOdmDataDelayed.vel.z; // calculate Kalman gains for X-axis observation Kfusion[0] = t77*(t29+P[0][4]*t4+P[0][6]*t9-P[0][5]*t11-P[0][1]*t17+P[0][2]*t20+P[0][3]*t24); Kfusion[1] = t77*(P[1][4]*t4+P[1][0]*t14+P[1][6]*t9-P[1][5]*t11-P[1][1]*t17+P[1][2]*t20+P[1][3]*t24); Kfusion[2] = t77*(t58+P[2][4]*t4+P[2][0]*t14+P[2][6]*t9-P[2][5]*t11-P[2][1]*t17+P[2][3]*t24); Kfusion[3] = t77*(t66+P[3][4]*t4+P[3][0]*t14+P[3][6]*t9-P[3][5]*t11-P[3][1]*t17+P[3][2]*t20); Kfusion[4] = t77*(t31+P[4][0]*t14+P[4][6]*t9-P[4][5]*t11-P[4][1]*t17+P[4][2]*t20+P[4][3]*t24); Kfusion[5] = t77*(-t80+P[5][4]*t4+P[5][0]*t14+P[5][6]*t9-P[5][1]*t17+P[5][2]*t20+P[5][3]*t24); Kfusion[6] = t77*(t69+P[6][4]*t4+P[6][0]*t14-P[6][5]*t11-P[6][1]*t17+P[6][2]*t20+P[6][3]*t24); Kfusion[7] = t77*(P[7][4]*t4+P[7][0]*t14+P[7][6]*t9-P[7][5]*t11-P[7][1]*t17+P[7][2]*t20+P[7][3]*t24); Kfusion[8] = t77*(P[8][4]*t4+P[8][0]*t14+P[8][6]*t9-P[8][5]*t11-P[8][1]*t17+P[8][2]*t20+P[8][3]*t24); Kfusion[9] = t77*(P[9][4]*t4+P[9][0]*t14+P[9][6]*t9-P[9][5]*t11-P[9][1]*t17+P[9][2]*t20+P[9][3]*t24); if (!inhibitDelAngBiasStates) { Kfusion[10] = t77*(P[10][4]*t4+P[10][0]*t14+P[10][6]*t9-P[10][5]*t11-P[10][1]*t17+P[10][2]*t20+P[10][3]*t24); Kfusion[11] = t77*(P[11][4]*t4+P[11][0]*t14+P[11][6]*t9-P[11][5]*t11-P[11][1]*t17+P[11][2]*t20+P[11][3]*t24); Kfusion[12] = t77*(P[12][4]*t4+P[12][0]*t14+P[12][6]*t9-P[12][5]*t11-P[12][1]*t17+P[12][2]*t20+P[12][3]*t24); } else { // zero indexes 10 to 12 zero_range(&Kfusion[0], 10, 12); } if (!inhibitDelVelBiasStates && !badIMUdata) { for (uint8_t index = 0; index < 3; index++) { const uint8_t stateIndex = index + 13; if (!dvelBiasAxisInhibit[index]) { Kfusion[stateIndex] = t77*(P[stateIndex][4]*t4+P[stateIndex][0]*t14+P[stateIndex][6]*t9-P[stateIndex][5]*t11-P[stateIndex][1]*t17+P[stateIndex][2]*t20+P[stateIndex][3]*t24); } else { Kfusion[stateIndex] = 0.0f; } } } else { // zero indexes 13 to 15 zero_range(&Kfusion[0], 13, 15); } if (!inhibitMagStates) { Kfusion[16] = t77*(P[16][4]*t4+P[16][0]*t14+P[16][6]*t9-P[16][5]*t11-P[16][1]*t17+P[16][2]*t20+P[16][3]*t24); Kfusion[17] = t77*(P[17][4]*t4+P[17][0]*t14+P[17][6]*t9-P[17][5]*t11-P[17][1]*t17+P[17][2]*t20+P[17][3]*t24); Kfusion[18] = t77*(P[18][4]*t4+P[18][0]*t14+P[18][6]*t9-P[18][5]*t11-P[18][1]*t17+P[18][2]*t20+P[18][3]*t24); Kfusion[19] = t77*(P[19][4]*t4+P[19][0]*t14+P[19][6]*t9-P[19][5]*t11-P[19][1]*t17+P[19][2]*t20+P[19][3]*t24); Kfusion[20] = t77*(P[20][4]*t4+P[20][0]*t14+P[20][6]*t9-P[20][5]*t11-P[20][1]*t17+P[20][2]*t20+P[20][3]*t24); Kfusion[21] = t77*(P[21][4]*t4+P[21][0]*t14+P[21][6]*t9-P[21][5]*t11-P[21][1]*t17+P[21][2]*t20+P[21][3]*t24); } else { // zero indexes 16 to 21 zero_range(&Kfusion[0], 16, 21); } if (!inhibitWindStates) { Kfusion[22] = t77*(P[22][4]*t4+P[22][0]*t14+P[22][6]*t9-P[22][5]*t11-P[22][1]*t17+P[22][2]*t20+P[22][3]*t24); Kfusion[23] = t77*(P[23][4]*t4+P[23][0]*t14+P[23][6]*t9-P[23][5]*t11-P[23][1]*t17+P[23][2]*t20+P[23][3]*t24); } else { // zero indexes 22 to 23 zero_range(&Kfusion[0], 22, 23); } } else { return; } // calculate the innovation consistency test ratio // TODO add tuning parameter for gate bodyVelTestRatio[obsIndex] = sq(innovBodyVel[obsIndex]) / (sq(5.0f) * varInnovBodyVel[obsIndex]); // Check the innovation for consistency and don't fuse if out of bounds // TODO also apply angular velocity magnitude check if ((bodyVelTestRatio[obsIndex]) < 1.0f) { // record the last time observations were accepted for fusion prevBodyVelFuseTime_ms = imuSampleTime_ms; // notify first time only if (!bodyVelFusionActive) { bodyVelFusionActive = true; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u fusing odometry",(unsigned)imu_index); } // correct the covariance P = (I - K*H)*P // take advantage of the empty columns in KH to reduce the // number of operations for (unsigned i = 0; i<=stateIndexLim; i++) { for (unsigned j = 0; j<=6; j++) { KH[i][j] = Kfusion[i] * H_VEL[j]; } for (unsigned j = 7; j<=stateIndexLim; j++) { KH[i][j] = 0.0f; } } for (unsigned j = 0; j<=stateIndexLim; j++) { for (unsigned i = 0; i<=stateIndexLim; i++) { ftype res = 0; res += KH[i][0] * P[0][j]; res += KH[i][1] * P[1][j]; res += KH[i][2] * P[2][j]; res += KH[i][3] * P[3][j]; res += KH[i][4] * P[4][j]; res += KH[i][5] * P[5][j]; res += KH[i][6] * P[6][j]; KHP[i][j] = res; } } // Check that we are not going to drive any variances negative and skip the update if so bool healthyFusion = true; for (uint8_t i= 0; i<=stateIndexLim; i++) { if (KHP[i][i] > P[i][i]) { healthyFusion = false; } } if (healthyFusion) { // update the covariance matrix for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning. ForceSymmetry(); ConstrainVariances(); // correct the state vector for (uint8_t j= 0; j<=stateIndexLim; j++) { statesArray[j] = statesArray[j] - Kfusion[j] * innovBodyVel[obsIndex]; } stateStruct.quat.normalize(); } else { // record bad axis if (obsIndex == 0) { faultStatus.bad_xvel = true; } else if (obsIndex == 1) { faultStatus.bad_yvel = true; } else if (obsIndex == 2) { faultStatus.bad_zvel = true; } } } } } #endif // EK3_FEATURE_BODY_ODOM #if EK3_FEATURE_BODY_ODOM // select fusion of body odometry measurements void NavEKF3_core::SelectBodyOdomFusion() { // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz // If so, don't fuse measurements on this time step to reduce frame over-runs // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements if (magFusePerformed && (dtIMUavg < 0.005f) && !bodyVelFusionDelayed) { bodyVelFusionDelayed = true; return; } else { bodyVelFusionDelayed = false; } // Check for body odometry data (aka visual position delta) at the fusion time horizon const bool bodyOdomDataToFuse = storedBodyOdm.recall(bodyOdmDataDelayed, imuDataDelayed.time_ms); if (bodyOdomDataToFuse && frontend->sources.useVelXYSource(AP_NavEKF_Source::SourceXY::EXTNAV)) { // Fuse data into the main filter FuseBodyVel(); } // Check for wheel encoder data at the fusion time horizon const bool wheelOdomDataToFuse = storedWheelOdm.recall(wheelOdmDataDelayed, imuDataDelayed.time_ms); if (wheelOdomDataToFuse && frontend->sources.useVelXYSource(AP_NavEKF_Source::SourceXY::WHEEL_ENCODER)) { // check if the delta time is too small to calculate a velocity if (wheelOdmDataDelayed.delTime > EKF_TARGET_DT) { // get the forward velocity ftype fwdSpd = wheelOdmDataDelayed.delAng * wheelOdmDataDelayed.radius * (1.0f / wheelOdmDataDelayed.delTime); // get the unit vector from the projection of the X axis onto the horizontal Vector3F unitVec; unitVec.x = prevTnb.a.x; unitVec.y = prevTnb.a.y; unitVec.z = 0.0f; unitVec.normalize(); // multiply by forward speed to get velocity vector measured by wheel encoders Vector3F velNED = unitVec * fwdSpd; // This is a hack to enable use of the existing body frame velocity fusion method // TODO write a dedicated observation model for wheel encoders bodyOdmDataDelayed.vel = prevTnb * velNED; bodyOdmDataDelayed.body_offset = wheelOdmDataDelayed.hub_offset; bodyOdmDataDelayed.velErr = frontend->_wencOdmVelErr; // Fuse data into the main filter FuseBodyVel(); } } } #endif // EK3_FEATURE_BODY_ODOM