#include #include #include // Attitude control library #include #include #include #include #include #include /* QuadPlane specific functionality */ class QuadPlane { public: friend class Plane; friend class AP_Tuning_Plane; friend class GCS_MAVLINK_Plane; friend class AP_AdvancedFailsafe_Plane; QuadPlane(AP_AHRS_NavEKF &_ahrs); // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; void control_run(void); void control_auto(const Location &loc); bool init_mode(void); bool setup(void); void vtol_position_controller(void); void setup_target_position(void); void takeoff_controller(void); void waypoint_controller(void); // update transition handling void update(void); // set motor arming void set_armed(bool armed); // is VTOL available? bool available(void) const { return initialised; } // is quadplane assisting? bool in_assisted_flight(void) const { return available() && assisted_flight; } bool handle_do_vtol_transition(enum MAV_VTOL_STATE state); bool do_vtol_takeoff(const AP_Mission::Mission_Command& cmd); bool do_vtol_land(const AP_Mission::Mission_Command& cmd); bool verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd); bool verify_vtol_land(void); bool in_vtol_auto(void); bool in_vtol_mode(void); // vtol help for is_flying() bool is_flying(void); // return current throttle as a percentate uint8_t throttle_percentage(void) const { return last_throttle * 100; } // return desired forward throttle percentage int8_t forward_throttle_pct(void); float get_weathervane_yaw_rate_cds(void); // see if we are flying from vtol point of view bool is_flying_vtol(void); // return true when tailsitter frame configured bool is_tailsitter(void); // return true when flying a tailsitter in VTOL bool tailsitter_active(void); // create outputs for tailsitters void tailsitter_output(void); // handle different tailsitter input types void tailsitter_check_input(void); // check if we have completed transition bool tailsitter_transition_complete(void); // user initiated takeoff for guided mode bool do_user_takeoff(float takeoff_altitude); struct PACKED log_QControl_Tuning { LOG_PACKET_HEADER; uint64_t time_us; float angle_boost; float throttle_out; float desired_alt; float inav_alt; int16_t desired_climb_rate; int16_t climb_rate; float dvx; float dvy; float dax; float day; float throttle_mix; }; private: AP_AHRS_NavEKF &ahrs; AP_Vehicle::MultiCopter aparm; AP_InertialNav_NavEKF inertial_nav{ahrs}; AC_P p_pos_xy{0.7}; AC_P p_alt_hold{1}; AC_P p_vel_z{5}; AC_PID pid_accel_z{0.3, 1, 0, 800, 10, 0.02}; AC_PI_2D pi_vel_xy{0.7, 0.35, 1000, 5, 0.02}; AP_Int8 frame_class; AP_Int8 frame_type; AP_MotorsMulticopter *motors; const struct AP_Param::GroupInfo *motors_var_info; AC_AttitudeControl_Multi *attitude_control; AC_PosControl *pos_control; AC_WPNav *wp_nav; // maximum vertical velocity the pilot may request AP_Int16 pilot_velocity_z_max; // vertical acceleration the pilot may request AP_Int16 pilot_accel_z; // check for quadplane assistance needed bool assistance_needed(float aspeed); // update transition handling void update_transition(void); // check for an EKF yaw reset void check_yaw_reset(void); // hold hover (for transition) void hold_hover(float target_climb_rate); // hold stabilize (for transition) void hold_stabilize(float throttle_in); // get pilot desired yaw rate in cd/s float get_pilot_input_yaw_rate_cds(void); // get overall desired yaw rate in cd/s float get_desired_yaw_rate_cds(void); // get desired climb rate in cm/s float get_pilot_desired_climb_rate_cms(void); // initialise throttle_wait when entering mode void init_throttle_wait(); // use multicopter rate controller void multicopter_attitude_rate_update(float yaw_rate_cds, float smoothing_gain); // main entry points for VTOL flight modes void init_stabilize(void); void control_stabilize(void); void init_hover(void); void control_hover(void); void run_rate_controller(void); void init_loiter(void); void init_land(void); void control_loiter(void); void check_land_complete(void); void init_qrtl(void); void control_qrtl(void); float assist_climb_rate_cms(void); // calculate desired yaw rate for assistance float desired_auto_yaw_rate_cds(void); bool should_relax(void); void motors_output(void); void Log_Write_QControl_Tuning(); float landing_descent_rate_cms(float height_above_ground); // setup correct aux channels for frame class void setup_default_channels(uint8_t num_motors); void guided_start(void); void guided_update(void); void check_throttle_suppression(void); void run_z_controller(void); void setup_defaults(void); void setup_defaults_table(const struct defaults_struct *defaults, uint8_t count); AP_Int16 transition_time_ms; AP_Int16 rc_speed; // min and max PWM for throttle AP_Int16 thr_min_pwm; AP_Int16 thr_max_pwm; // speed below which quad assistance is given AP_Float assist_speed; // angular error at which quad assistance is given AP_Int8 assist_angle; uint32_t angle_error_start_ms; // maximum yaw rate in degrees/second AP_Float yaw_rate_max; // landing speed in cm/s AP_Int16 land_speed_cms; // QRTL start altitude, meters AP_Int16 qrtl_alt; // alt to switch to QLAND_FINAL AP_Float land_final_alt; AP_Float vel_forward_alt_cutoff; AP_Int8 enable; AP_Int8 transition_pitch_max; // control if a VTOL RTL will be used AP_Int8 rtl_mode; // control if a VTOL GUIDED will be used AP_Int8 guided_mode; // control ESC throttle calibration AP_Int8 esc_calibration; void run_esc_calibration(void); // ICEngine control on landing AP_Int8 land_icengine_cut; // HEARTBEAT mav_type override AP_Int8 mav_type; uint8_t get_mav_type(void) const; // time we last got an EKF yaw reset uint32_t ekfYawReset_ms; struct { AP_Float gain; float integrator; uint32_t last_ms; int8_t last_pct; } vel_forward; struct { AP_Float gain; AP_Float min_roll; uint32_t last_pilot_input_ms; float last_output; } weathervane; bool initialised; // timer start for transition uint32_t transition_start_ms; Location last_auto_target; // last throttle value when active float last_throttle; // pitch when we enter loiter mode int32_t loiter_initial_pitch_cd; const float smoothing_gain = 6; // true if we have reached the airspeed threshold for transition enum { TRANSITION_AIRSPEED_WAIT, TRANSITION_TIMER, TRANSITION_ANGLE_WAIT, TRANSITION_DONE } transition_state; // true when waiting for pilot throttle bool throttle_wait:1; // true when quad is assisting a fixed wing mode bool assisted_flight:1; // true when in angle assist bool in_angle_assist:1; // are we in a guided takeoff? bool guided_takeoff:1; struct { // time when motors reached lower limit uint32_t lower_limit_start_ms; uint32_t land_start_ms; float vpos_start_m; } landing_detect; // time we last set the loiter target uint32_t last_loiter_ms; enum position_control_state { QPOS_POSITION1, QPOS_POSITION2, QPOS_LAND_DESCEND, QPOS_LAND_FINAL, QPOS_LAND_COMPLETE }; struct { enum position_control_state state; float speed_scale; Vector2f target_velocity; float max_speed; Vector3f target; bool slow_descent:1; } poscontrol; struct { bool running; uint32_t start_ms; // system time the motor test began uint32_t timeout_ms = 0; // test will timeout this many milliseconds after the motor_test_start_ms uint8_t seq = 0; // motor sequence number of motor being tested uint8_t throttle_type = 0; // motor throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through) uint16_t throttle_value = 0; // throttle to be sent to motor, value depends upon it's type uint8_t motor_count; // number of motors to cycle } motor_test; // time of last control log message uint32_t last_ctrl_log_ms; // types of tilt mechanisms enum {TILT_TYPE_CONTINUOUS=0, TILT_TYPE_BINARY=1, TILT_TYPE_VECTORED_YAW=2}; // tiltrotor control variables struct { AP_Int16 tilt_mask; AP_Int16 max_rate_up_dps; AP_Int16 max_rate_down_dps; AP_Int8 max_angle_deg; AP_Int8 tilt_type; AP_Float tilt_yaw_angle; float current_tilt; float current_throttle; bool motors_active:1; } tilt; enum tailsitter_input { TAILSITTER_INPUT_MULTICOPTER = 0, TAILSITTER_INPUT_PLANE = 1, }; enum tailsitter_mask { TAILSITTER_MASK_AILERON = 1, TAILSITTER_MASK_ELEVATOR = 2, TAILSITTER_MASK_THROTTLE = 4, TAILSITTER_MASK_RUDDER = 8, }; // tailsitter control variables struct { AP_Int8 transition_angle; AP_Int8 input_type; AP_Int8 input_mask; AP_Int8 input_mask_chan; AP_Float vectored_forward_gain; AP_Float vectored_hover_gain; AP_Float vectored_hover_power; } tailsitter; // the attitude view of the VTOL attitude controller AP_AHRS_View *ahrs_view; // time when motors were last active uint32_t last_motors_active_ms; // time when we last ran the vertical accel controller uint32_t last_pidz_active_ms; uint32_t last_pidz_init_ms; void tiltrotor_slew(float tilt); void tiltrotor_binary_slew(bool forward); void tiltrotor_update(void); void tiltrotor_continuous_update(void); void tiltrotor_binary_update(void); void tiltrotor_vectored_yaw(void); void tilt_compensate_up(float *thrust, uint8_t num_motors); void tilt_compensate_down(float *thrust, uint8_t num_motors); void tilt_compensate(float *thrust, uint8_t num_motors); bool is_motor_tilting(uint8_t motor) const { return (((uint8_t)tilt.tilt_mask.get()) & (1U<