/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* 21 state EKF based on https://github.com/priseborough/InertialNav Converted from Matlab to C++ by Paul Riseborough This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef AP_NavEKF #define AP_NavEKF #include #include #include #include #include // #define MATH_CHECK_INDEXES 1 #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include #endif class AP_AHRS; class NavEKF { public: typedef float ftype; #if MATH_CHECK_INDEXES typedef VectorN Vector2; typedef VectorN Vector3; typedef VectorN Vector6; typedef VectorN Vector8; typedef VectorN Vector11; typedef VectorN Vector13; typedef VectorN Vector14; typedef VectorN Vector21; typedef VectorN,3> Matrix3; typedef VectorN,21> Matrix21; typedef VectorN,21> Matrix21_50; #else typedef ftype Vector2[2]; typedef ftype Vector3[3]; typedef ftype Vector6[6]; typedef ftype Vector8[8]; typedef ftype Vector11[11]; typedef ftype Vector13[13]; typedef ftype Vector14[14]; typedef ftype Vector21[21]; typedef ftype Matrix3[3][3]; typedef ftype Matrix21[21][21]; typedef ftype Matrix21_50[21][50]; #endif // Constructor NavEKF(const AP_AHRS *ahrs, AP_Baro &baro); // Initialise the filter states from the AHRS and magnetometer data (if present) void InitialiseFilter(void); // Update Filter States - this should be called whenever new IMU data is available void UpdateFilter(void); // return true if the filter is healthy bool healthy(void) const; // fill in latitude, longitude and height of the reference point void getRefLLH(struct Location &loc) const; // set latitude, longitude and height of the reference point void setRefLLH(int32_t lat, int32_t lng, int32_t alt_cm); // return the last calculated NED position relative to the // reference point (m). Return false if no position is available bool getPosNED(Vector3f &pos) const; // return NED velocity in m/s void getVelNED(Vector3f &vel) const; // return bodyaxis gyro bias estimates in deg/hr void getGyroBias(Vector3f &gyroBias) const; // return body axis accelerometer bias estimates in m/s^2 void getAccelBias(Vector3f &accelBias) const; // return the NED wind speed estimates in m/s void getWind(Vector3f &wind) const; // return earth magnetic field estimates in measurement units void getMagNED(Vector3f &magNED) const; // return body magnetic field estimates in measurement units void getMagXYZ(Vector3f &magXYZ) const; // return the last calculated latitude, longitude and height bool getLLH(struct Location &loc) const; // return the Euler roll, pitch and yaw angle in radians void getEulerAngles(Vector3f &eulers) const; // get the transformation matrix from NED to XYD (body) axes void getRotationNEDToBody(Matrix3f &mat) const; // get the transformation matrix from XYZ (body) to NED axes void getRotationBodyToNED(Matrix3f &mat) const; // get the quaternions defining the rotation from NED to XYZ (body) axes void getQuaternion(Quaternion &quat) const; private: const AP_AHRS *_ahrs; AP_Baro &_baro; void UpdateStrapdownEquationsNED(); void CovariancePrediction(); void FixCovarianceErrors(); void FuseVelPosNED(); void FuseMagnetometer(); void FuseAirspeed(); void zeroRows(Matrix21 &covMat, uint8_t first, uint8_t last); void zeroCols(Matrix21 &covMat, uint8_t first, uint8_t last); void quatNorm(Quaternion &quatOut, const Quaternion &quatIn) const; // store states along with system time stamp in msces void StoreStates(void); // recall state vector stored at closest time to the one specified by msec void RecallStates(Vector21 &statesForFusion, uint32_t msec); void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const; void calcEarthRateNED(Vector3f &omega, int32_t latitude) const; void calcvelNED(Vector3f &velNED, float gpsCourse, float gpsGndSpd, float gpsVelD) const; void calcllh(float &lat, float &lon, float &hgt) const; void OnGroundCheck(); void CovarianceInit(); void readIMUData(); void readGpsData(); void readHgtData(); void readMagData(); void readAirSpdData(); void SelectVelPosFusion(); void SelectHgtFusion(); void SelectTasFusion(); void SelectMagFusion(); bool statesInitialised; // Tuning Parameters ftype _gpsHorizVelVar; // GPS horizontal velocity variance (m/s)^2 ftype _gpsVertVelVar; // GPS vertical velocity variance (m/s)^2 ftype _gpsHorizPosVar; // GPS horizontal position variance m^2 ftype _gpsVertPosVar; // GPS vertical position variance m^2 ftype _gpsVelVarAccScale; // scale factor applied to velocity variance due to Vdot ftype _gpsPosVarAccScale; // scale factor applied to position variance due to Vdot ftype _magVar; // magnetometer measurement variance Gauss^2 ftype _magVarRateScale; // scale factor applied to magnetometer variance due to Vdot ftype _easVar; // equivalent airspeed noise variance (m/s)^2 ftype _windStateNoise; // RMS rate of change of wind (m/s^2) ftype _wndVarHgtRateScale; // scale factor applied to wind process noise from height rate Vector21 states; // state matrix - 4 x quaternions, 3 x Vel, 3 x Pos, 3 x gyro bias, 3 x accel bias, 2 x wind vel, 3 x earth mag field, 3 x body mag field Matrix21 KH; // intermediate result used for covariance updates Matrix21 KHP; // intermediate result used for covariance updates Matrix21 P; // covariance matrix Matrix21_50 storedStates; // state vectors stored for the last 50 time steps uint32_t statetimeStamp[50]; // time stamp for each state vector stored Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad) Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s) Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad) Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s) Vector3f prevDelAng; // previous delta angle use for INS coning error compensation Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2) Vector3f earthRateNED; // earths angular rate vector in NED (rad/s) Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s) Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad) ftype dtIMU; // time lapsed since the last IMU measurement (sec) ftype dt; // time lapsed since the last covariance prediction (sec) ftype hgtRate; // state for rate of change of height filter bool onGround; // boolean true when the flight vehicle is on the ground (not flying) const bool useAirspeed; // boolean true if airspeed data is being used const bool useCompass; // boolean true if magnetometer data is being used const uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity Vector6 innovVelPos; // innovation output for a group of measurements Vector6 varInnovVelPos; // innovation variance output for a group of measurements bool fuseVelData; // this boolean causes the velNED measurements to be fused bool fusePosData; // this boolean causes the posNE measurements to be fused bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused Vector3f velNED; // North, East, Down velocity measurements (m/s) Vector2 posNE; // North, East position measurements (m) ftype hgtMea; // height measurement relative to reference point (m) Vector21 statesAtVelTime; // States at the effective time of velNED measurements Vector21 statesAtPosTime; // States at the effective time of posNE measurements Vector21 statesAtHgtTime; // States at the effective time of hgtMea measurement Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements bool fuseMagData; // boolean true when magnetometer data is to be fused Vector3f magData; // magnetometer flux readings in X,Y,Z body axes Vector21 statesAtMagMeasTime; // filter states at the effective time of compass measurements ftype innovVtas; // innovation output from fusion of airspeed measurements ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements bool fuseVtasData; // boolean true when airspeed data is to be fused float VtasMeas; // true airspeed measurement (m/s) Vector21 statesAtVtasMeasTime; // filter states at the effective measurement time Vector3f magBias; // magnetometer bias vector in XYZ body axes const ftype covTimeStepMax; // maximum time allowed between covariance predictions const ftype covDelAngMax; // maximum delta angle between covariance predictions bool covPredStep; // boolean set to true when a covariance prediction step has been performed const ftype yawVarScale; // scale factor applied to yaw gyro errors when on ground bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed bool tasFuseStep; // boolean set to true when airspeed fusion is being performed uint32_t TASmsecPrev; // time stamp of last TAS fusion step const uint32_t TASmsecMax; // maximum allowed interval between TAS fusion steps uint32_t MAGmsecPrev; // time stamp of last compass fusion step const uint32_t MAGmsecMax; // maximum allowed interval between compass fusion steps uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step const uint32_t HGTmsecMax; // maximum allowed interval between height measurement fusion steps const bool fuseMeNow; // boolean to force fusion whenever data arrives // last time compass was updated uint32_t lastMagUpdate; // last time airspeed was updated uint32_t lastAirspeedUpdate; // Estimated time delays (msec) for different measurements relative to IMU const uint32_t msecVelDelay; const uint32_t msecPosDelay; const uint32_t msecHgtDelay; const uint32_t msecMagDelay; const uint32_t msecTasDelay; // IMU input data variables const ftype dtIMUAvg; ftype dtIMUAvgInv; uint32_t IMUmsec; // GPS input data variables ftype gpsCourse; ftype gpsGndSpd; bool newDataGps; // Magnetometer input data variables ftype magIn; bool newDataMag; // TAS input variables bool newDataTas; // Time stamp when vel, pos or height measurements last failed checks uint32_t velFailTime; uint32_t posFailTime; uint32_t hgtFailTime; // states held by magnetomter fusion across time steps // magnetometer X,Y,Z measurements are fused across three time steps // to struct { ftype q0; ftype q1; ftype q2; ftype q3; ftype magN; ftype magE; ftype magD; ftype magXbias; ftype magYbias; ftype magZbias; uint8_t obsIndex; Matrix3f DCM; Vector3f MagPred; ftype R_MAG; ftype SH_MAG[9]; } mag_state; // State vector storage index uint8_t storeIndex; // time of last GPS fix used to determine if new data has arrived uint32_t lastFixTime_ms; Vector3f lastAngRate; Vector3f lastAccel; // CovariancePrediction variables Matrix21 nextP; Vector21 processNoise; Vector14 SF; Vector8 SG; Vector11 SQ; Vector8 SPP; #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 // performance counters perf_counter_t _perf_UpdateFilter; perf_counter_t _perf_CovariancePrediction; perf_counter_t _perf_FuseVelPosNED; perf_counter_t _perf_FuseMagnetometer; perf_counter_t _perf_FuseAirspeed; #endif }; #if CONFIG_HAL_BOARD != HAL_BOARD_PX4 #define perf_begin(x) #define perf_end(x) #endif #endif // AP_NavEKF