/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ArduCopter (also known as APM, APM:Copter or just Copter) * Wiki: copter.ardupilot.org * Creator: Jason Short * Lead Developer: Randy Mackay * Lead Tester: Marco Robustini * Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen, Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland, Jean-Louis Naudin, Mike Smith, and more * Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio * * Special Thanks to contributors (in alphabetical order by first name): * * Adam M Rivera :Auto Compass Declination * Amilcar Lucas :Camera mount library * Andrew Tridgell :General development, Mavlink Support * Andy Piper :Harmonic notch, In-flight FFT, Bi-directional DShot, various drivers * Angel Fernandez :Alpha testing * AndreasAntonopoulous:GeoFence * Arthur Benemann :DroidPlanner GCS * Benjamin Pelletier :Libraries * Bill King :Single Copter * Christof Schmid :Alpha testing * Craig Elder :Release Management, Support * Dani Saez :V Octo Support * Doug Weibel :DCM, Libraries, Control law advice * Emile Castelnuovo :VRBrain port, bug fixes * Gregory Fletcher :Camera mount orientation math * Guntars :Arming safety suggestion * HappyKillmore :Mavlink GCS * Hein Hollander :Octo Support, Heli Testing * Igor van Airde :Control Law optimization * Jack Dunkle :Alpha testing * James Goppert :Mavlink Support * Jani Hiriven :Testing feedback * Jean-Louis Naudin :Auto Landing * John Arne Birkeland :PPM Encoder * Jose Julio :Stabilization Control laws, MPU6k driver * Julien Dubois :PosHold flight mode * Julian Oes :Pixhawk * Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed * Kevin Hester :Andropilot GCS * Max Levine :Tri Support, Graphics * Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers * Marco Robustini :Lead tester * Michael Oborne :Mission Planner GCS * Mike Smith :Pixhawk driver, coding support * Olivier Adler :PPM Encoder, piezo buzzer * Pat Hickey :Hardware Abstraction Layer (HAL) * Robert Lefebvre :Heli Support, Copter LEDs * Roberto Navoni :Library testing, Porting to VRBrain * Sandro Benigno :Camera support, MinimOSD * Sandro Tognana :PosHold flight mode * Sebastian Quilter :SmartRTL * ..and many more. * * Code commit statistics can be found here: https://github.com/ArduPilot/ardupilot/graphs/contributors * Wiki: https://copter.ardupilot.org/ * */ #include "Copter.h" #define FORCE_VERSION_H_INCLUDE #include "version.h" #undef FORCE_VERSION_H_INCLUDE const AP_HAL::HAL& hal = AP_HAL::get_HAL(); #define SCHED_TASK(func, _interval_ticks, _max_time_micros, _prio) SCHED_TASK_CLASS(Copter, &copter, func, _interval_ticks, _max_time_micros, _prio) #define FAST_TASK(func) FAST_TASK_CLASS(Copter, &copter, func) /* scheduler table - all tasks should be listed here. All entries in this table must be ordered by priority. This table is interleaved with the table in AP_Vehicle to determine the order in which tasks are run. Convenience methods SCHED_TASK and SCHED_TASK_CLASS are provided to build entries in this structure: SCHED_TASK arguments: - name of static function to call - rate (in Hertz) at which the function should be called - expected time (in MicroSeconds) that the function should take to run - priority (0 through 255, lower number meaning higher priority) SCHED_TASK_CLASS arguments: - class name of method to be called - instance on which to call the method - method to call on that instance - rate (in Hertz) at which the method should be called - expected time (in MicroSeconds) that the method should take to run - priority (0 through 255, lower number meaning higher priority) */ const AP_Scheduler::Task Copter::scheduler_tasks[] = { // update INS immediately to get current gyro data populated FAST_TASK_CLASS(AP_InertialSensor, &copter.ins, update), // run low level rate controllers that only require IMU data FAST_TASK(run_rate_controller), #if AC_CUSTOMCONTROL_MULTI_ENABLED FAST_TASK(run_custom_controller), #endif #if FRAME_CONFIG == HELI_FRAME FAST_TASK(heli_update_autorotation), #endif //HELI_FRAME // send outputs to the motors library immediately FAST_TASK(motors_output), // run EKF state estimator (expensive) FAST_TASK(read_AHRS), #if FRAME_CONFIG == HELI_FRAME FAST_TASK(update_heli_control_dynamics), #endif //HELI_FRAME // Inertial Nav FAST_TASK(read_inertia), // check if ekf has reset target heading or position FAST_TASK(check_ekf_reset), // run the attitude controllers FAST_TASK(update_flight_mode), // update home from EKF if necessary FAST_TASK(update_home_from_EKF), // check if we've landed or crashed FAST_TASK(update_land_and_crash_detectors), // surface tracking update FAST_TASK(update_rangefinder_terrain_offset), #if HAL_MOUNT_ENABLED // camera mount's fast update FAST_TASK_CLASS(AP_Mount, &copter.camera_mount, update_fast), #endif #if HAL_LOGGING_ENABLED FAST_TASK(Log_Video_Stabilisation), #endif SCHED_TASK(rc_loop, 250, 130, 3), SCHED_TASK(throttle_loop, 50, 75, 6), #if AP_FENCE_ENABLED SCHED_TASK(fence_check, 25, 100, 7), #endif SCHED_TASK_CLASS(AP_GPS, &copter.gps, update, 50, 200, 9), #if AP_OPTICALFLOW_ENABLED SCHED_TASK_CLASS(AP_OpticalFlow, &copter.optflow, update, 200, 160, 12), #endif SCHED_TASK(update_batt_compass, 10, 120, 15), SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&copter.g2.rc_channels, read_aux_all, 10, 50, 18), SCHED_TASK(arm_motors_check, 10, 50, 21), #if TOY_MODE_ENABLED SCHED_TASK_CLASS(ToyMode, &copter.g2.toy_mode, update, 10, 50, 24), #endif SCHED_TASK(auto_disarm_check, 10, 50, 27), SCHED_TASK(auto_trim, 10, 75, 30), #if AP_RANGEFINDER_ENABLED SCHED_TASK(read_rangefinder, 20, 100, 33), #endif #if HAL_PROXIMITY_ENABLED SCHED_TASK_CLASS(AP_Proximity, &copter.g2.proximity, update, 200, 50, 36), #endif #if AP_BEACON_ENABLED SCHED_TASK_CLASS(AP_Beacon, &copter.g2.beacon, update, 400, 50, 39), #endif SCHED_TASK(update_altitude, 10, 100, 42), SCHED_TASK(run_nav_updates, 50, 100, 45), SCHED_TASK(update_throttle_hover,100, 90, 48), #if MODE_SMARTRTL_ENABLED SCHED_TASK_CLASS(ModeSmartRTL, &copter.mode_smartrtl, save_position, 3, 100, 51), #endif #if HAL_SPRAYER_ENABLED SCHED_TASK_CLASS(AC_Sprayer, &copter.sprayer, update, 3, 90, 54), #endif SCHED_TASK(three_hz_loop, 3, 75, 57), #if AP_SERVORELAYEVENTS_ENABLED SCHED_TASK_CLASS(AP_ServoRelayEvents, &copter.ServoRelayEvents, update_events, 50, 75, 60), #endif #if AC_PRECLAND_ENABLED SCHED_TASK(update_precland, 400, 50, 69), #endif #if FRAME_CONFIG == HELI_FRAME SCHED_TASK(check_dynamic_flight, 50, 75, 72), #endif #if HAL_LOGGING_ENABLED SCHED_TASK(loop_rate_logging, LOOP_RATE, 50, 75), #endif SCHED_TASK(one_hz_loop, 1, 100, 81), SCHED_TASK(ekf_check, 10, 75, 84), SCHED_TASK(check_vibration, 10, 50, 87), SCHED_TASK(gpsglitch_check, 10, 50, 90), SCHED_TASK(takeoff_check, 50, 50, 91), #if AP_LANDINGGEAR_ENABLED SCHED_TASK(landinggear_update, 10, 75, 93), #endif SCHED_TASK(standby_update, 100, 75, 96), SCHED_TASK(lost_vehicle_check, 10, 50, 99), SCHED_TASK_CLASS(GCS, (GCS*)&copter._gcs, update_receive, 400, 180, 102), SCHED_TASK_CLASS(GCS, (GCS*)&copter._gcs, update_send, 400, 550, 105), #if HAL_MOUNT_ENABLED SCHED_TASK_CLASS(AP_Mount, &copter.camera_mount, update, 50, 75, 108), #endif #if AP_CAMERA_ENABLED SCHED_TASK_CLASS(AP_Camera, &copter.camera, update, 50, 75, 111), #endif #if HAL_LOGGING_ENABLED SCHED_TASK(ten_hz_logging_loop, 10, 350, 114), SCHED_TASK(twentyfive_hz_logging, 25, 110, 117), SCHED_TASK_CLASS(AP_Logger, &copter.logger, periodic_tasks, 400, 300, 120), #endif SCHED_TASK_CLASS(AP_InertialSensor, &copter.ins, periodic, 400, 50, 123), #if HAL_LOGGING_ENABLED SCHED_TASK_CLASS(AP_Scheduler, &copter.scheduler, update_logging, 0.1, 75, 126), #endif #if AP_RPM_ENABLED SCHED_TASK_CLASS(AP_RPM, &copter.rpm_sensor, update, 40, 200, 129), #endif #if AP_TEMPCALIBRATION_ENABLED SCHED_TASK_CLASS(AP_TempCalibration, &copter.g2.temp_calibration, update, 10, 100, 135), #endif #if HAL_ADSB_ENABLED SCHED_TASK(avoidance_adsb_update, 10, 100, 138), #endif #if AP_COPTER_ADVANCED_FAILSAFE_ENABLED SCHED_TASK(afs_fs_check, 10, 100, 141), #endif #if AP_TERRAIN_AVAILABLE SCHED_TASK(terrain_update, 10, 100, 144), #endif #if AP_WINCH_ENABLED SCHED_TASK_CLASS(AP_Winch, &copter.g2.winch, update, 50, 50, 150), #endif #ifdef USERHOOK_FASTLOOP SCHED_TASK(userhook_FastLoop, 100, 75, 153), #endif #ifdef USERHOOK_50HZLOOP SCHED_TASK(userhook_50Hz, 50, 75, 156), #endif #ifdef USERHOOK_MEDIUMLOOP SCHED_TASK(userhook_MediumLoop, 10, 75, 159), #endif #ifdef USERHOOK_SLOWLOOP SCHED_TASK(userhook_SlowLoop, 3.3, 75, 162), #endif #ifdef USERHOOK_SUPERSLOWLOOP SCHED_TASK(userhook_SuperSlowLoop, 1, 75, 165), #endif #if HAL_BUTTON_ENABLED SCHED_TASK_CLASS(AP_Button, &copter.button, update, 5, 100, 168), #endif }; void Copter::get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) { tasks = &scheduler_tasks[0]; task_count = ARRAY_SIZE(scheduler_tasks); log_bit = MASK_LOG_PM; } constexpr int8_t Copter::_failsafe_priorities[7]; #if AP_SCRIPTING_ENABLED || AP_EXTERNAL_CONTROL_ENABLED #if MODE_GUIDED_ENABLED // set target location (for use by external control and scripting) bool Copter::set_target_location(const Location& target_loc) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } return mode_guided.set_destination(target_loc); } // start takeoff to given altitude (for use by scripting) bool Copter::start_takeoff(const float alt) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } if (mode_guided.do_user_takeoff_start(alt * 100.0f)) { copter.set_auto_armed(true); return true; } return false; } #endif //MODE_GUIDED_ENABLED #endif //AP_SCRIPTING_ENABLED || AP_EXTERNAL_CONTROL_ENABLED #if AP_SCRIPTING_ENABLED #if MODE_GUIDED_ENABLED // set target position (for use by scripting) bool Copter::set_target_pos_NED(const Vector3f& target_pos, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative, bool terrain_alt) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } const Vector3f pos_neu_cm(target_pos.x * 100.0f, target_pos.y * 100.0f, -target_pos.z * 100.0f); return mode_guided.set_destination(pos_neu_cm, use_yaw, yaw_deg * 100.0, use_yaw_rate, yaw_rate_degs * 100.0, yaw_relative, terrain_alt); } // set target position and velocity (for use by scripting) bool Copter::set_target_posvel_NED(const Vector3f& target_pos, const Vector3f& target_vel) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } const Vector3f pos_neu_cm(target_pos.x * 100.0f, target_pos.y * 100.0f, -target_pos.z * 100.0f); const Vector3f vel_neu_cms(target_vel.x * 100.0f, target_vel.y * 100.0f, -target_vel.z * 100.0f); return mode_guided.set_destination_posvelaccel(pos_neu_cm, vel_neu_cms, Vector3f()); } // set target position, velocity and acceleration (for use by scripting) bool Copter::set_target_posvelaccel_NED(const Vector3f& target_pos, const Vector3f& target_vel, const Vector3f& target_accel, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } const Vector3f pos_neu_cm(target_pos.x * 100.0f, target_pos.y * 100.0f, -target_pos.z * 100.0f); const Vector3f vel_neu_cms(target_vel.x * 100.0f, target_vel.y * 100.0f, -target_vel.z * 100.0f); const Vector3f accel_neu_cms(target_accel.x * 100.0f, target_accel.y * 100.0f, -target_accel.z * 100.0f); return mode_guided.set_destination_posvelaccel(pos_neu_cm, vel_neu_cms, accel_neu_cms, use_yaw, yaw_deg * 100.0, use_yaw_rate, yaw_rate_degs * 100.0, yaw_relative); } bool Copter::set_target_velocity_NED(const Vector3f& vel_ned) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } // convert vector to neu in cm const Vector3f vel_neu_cms(vel_ned.x * 100.0f, vel_ned.y * 100.0f, -vel_ned.z * 100.0f); mode_guided.set_velocity(vel_neu_cms); return true; } // set target velocity and acceleration (for use by scripting) bool Copter::set_target_velaccel_NED(const Vector3f& target_vel, const Vector3f& target_accel, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool relative_yaw) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } // convert vector to neu in cm const Vector3f vel_neu_cms(target_vel.x * 100.0f, target_vel.y * 100.0f, -target_vel.z * 100.0f); const Vector3f accel_neu_cms(target_accel.x * 100.0f, target_accel.y * 100.0f, -target_accel.z * 100.0f); mode_guided.set_velaccel(vel_neu_cms, accel_neu_cms, use_yaw, yaw_deg * 100.0, use_yaw_rate, yaw_rate_degs * 100.0, relative_yaw); return true; } // set target roll pitch and yaw angles with throttle (for use by scripting) bool Copter::set_target_angle_and_climbrate(float roll_deg, float pitch_deg, float yaw_deg, float climb_rate_ms, bool use_yaw_rate, float yaw_rate_degs) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } Quaternion q; q.from_euler(radians(roll_deg),radians(pitch_deg),radians(yaw_deg)); mode_guided.set_angle(q, Vector3f{}, climb_rate_ms*100, false); return true; } // set target roll pitch and yaw rates with throttle (for use by scripting) bool Copter::set_target_rate_and_throttle(float roll_rate_dps, float pitch_rate_dps, float yaw_rate_dps, float throttle) { // exit if vehicle is not in Guided mode or Auto-Guided mode if (!flightmode->in_guided_mode()) { return false; } // Zero quaternion indicates rate control Quaternion q; q.zero(); // Convert from degrees per second to radians per second Vector3f ang_vel_body { roll_rate_dps, pitch_rate_dps, yaw_rate_dps }; ang_vel_body *= DEG_TO_RAD; // Pass to guided mode mode_guided.set_angle(q, ang_vel_body, throttle, true); return true; } // Register a custom mode with given number and names AP_Vehicle::custom_mode_state* Copter::register_custom_mode(const uint8_t num, const char* full_name, const char* short_name) { const Mode::Number number = (Mode::Number)num; // See if this mode has been registered already, if it has return the state for it // This allows scripting restarts for (uint8_t i = 0; i < ARRAY_SIZE(mode_guided_custom); i++) { if (mode_guided_custom[i] == nullptr) { break; } if ((mode_guided_custom[i]->mode_number() == number) && (strcmp(mode_guided_custom[i]->name(), full_name) == 0) && (strncmp(mode_guided_custom[i]->name4(), short_name, 4) == 0)) { return &mode_guided_custom[i]->state; } } // Number already registered to existing mode if (mode_from_mode_num(number) != nullptr) { return nullptr; } // Find free slot for (uint8_t i = 0; i < ARRAY_SIZE(mode_guided_custom); i++) { if (mode_guided_custom[i] == nullptr) { // Duplicate strings so were not pointing to unknown memory const char* full_name_copy = strdup(full_name); const char* short_name_copy = strndup(short_name, 4); if ((full_name_copy != nullptr) && (short_name_copy != nullptr)) { mode_guided_custom[i] = NEW_NOTHROW ModeGuidedCustom(number, full_name_copy, short_name_copy); } if (mode_guided_custom[i] == nullptr) { // Allocation failure return nullptr; } return &mode_guided_custom[i]->state; } } // No free slots return nullptr; } #endif // MODE_GUIDED_ENABLED #if MODE_CIRCLE_ENABLED // circle mode controls bool Copter::get_circle_radius(float &radius_m) { radius_m = circle_nav->get_radius() * 0.01f; return true; } bool Copter::set_circle_rate(float rate_dps) { circle_nav->set_rate(rate_dps); return true; } #endif // set desired speed (m/s). Used for scripting. bool Copter::set_desired_speed(float speed) { return flightmode->set_speed_xy(speed * 100.0f); } #if MODE_AUTO_ENABLED // returns true if mode supports NAV_SCRIPT_TIME mission commands bool Copter::nav_scripting_enable(uint8_t mode) { return mode == (uint8_t)mode_auto.mode_number(); } // lua scripts use this to retrieve the contents of the active command bool Copter::nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2, int16_t &arg3, int16_t &arg4) { if (flightmode != &mode_auto) { return false; } return mode_auto.nav_script_time(id, cmd, arg1, arg2, arg3, arg4); } // lua scripts use this to indicate when they have complete the command void Copter::nav_script_time_done(uint16_t id) { if (flightmode != &mode_auto) { return; } return mode_auto.nav_script_time_done(id); } #endif // returns true if the EKF failsafe has triggered. Only used by Lua scripts bool Copter::has_ekf_failsafed() const { return failsafe.ekf; } // get target location (for use by scripting) bool Copter::get_target_location(Location& target_loc) { return flightmode->get_wp(target_loc); } /* update_target_location() acts as a wrapper for set_target_location */ bool Copter::update_target_location(const Location &old_loc, const Location &new_loc) { /* by checking the caller has provided the correct old target location we prevent a race condition where the user changes mode or commands a different target in the controlling lua script */ Location next_WP_loc; flightmode->get_wp(next_WP_loc); if (!old_loc.same_loc_as(next_WP_loc) || old_loc.get_alt_frame() != new_loc.get_alt_frame()) { return false; } return set_target_location(new_loc); } #endif // AP_SCRIPTING_ENABLED // returns true if vehicle is landing. bool Copter::is_landing() const { return flightmode->is_landing(); } // returns true if vehicle is taking off. bool Copter::is_taking_off() const { return flightmode->is_taking_off(); } bool Copter::current_mode_requires_mission() const { #if MODE_AUTO_ENABLED return flightmode == &mode_auto; #else return false; #endif } // rc_loops - reads user input from transmitter/receiver // called at 100hz void Copter::rc_loop() { // Read radio and 3-position switch on radio // ----------------------------------------- read_radio(); rc().read_mode_switch(); } // throttle_loop - should be run at 50 hz // --------------------------- void Copter::throttle_loop() { // update throttle_low_comp value (controls priority of throttle vs attitude control) update_throttle_mix(); // check auto_armed status update_auto_armed(); #if FRAME_CONFIG == HELI_FRAME // update rotor speed heli_update_rotor_speed_targets(); // update trad heli swash plate movement heli_update_landing_swash(); #endif // compensate for ground effect (if enabled) update_ground_effect_detector(); update_ekf_terrain_height_stable(); } // update_batt_compass - read battery and compass // should be called at 10hz void Copter::update_batt_compass(void) { // read battery before compass because it may be used for motor interference compensation battery.read(); if(AP::compass().available()) { // update compass with throttle value - used for compassmot compass.set_throttle(motors->get_throttle()); compass.set_voltage(battery.voltage()); compass.read(); } } #if HAL_LOGGING_ENABLED // Full rate logging of attitude, rate and pid loops // should be run at loop rate void Copter::loop_rate_logging() { if (should_log(MASK_LOG_ATTITUDE_FAST) && !copter.flightmode->logs_attitude()) { Log_Write_Attitude(); Log_Write_PIDS(); // only logs if PIDS bitmask is set } #if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED if (should_log(MASK_LOG_FTN_FAST)) { AP::ins().write_notch_log_messages(); } #endif if (should_log(MASK_LOG_IMU_FAST)) { AP::ins().Write_IMU(); } } // ten_hz_logging_loop // should be run at 10hz void Copter::ten_hz_logging_loop() { // always write AHRS attitude at 10Hz ahrs.Write_Attitude(attitude_control->get_att_target_euler_rad() * RAD_TO_DEG); // log attitude controller data if we're not already logging at the higher rate if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST) && !copter.flightmode->logs_attitude()) { Log_Write_Attitude(); } if (!should_log(MASK_LOG_ATTITUDE_FAST) && !copter.flightmode->logs_attitude()) { // log at 10Hz if PIDS bitmask is selected, even if no ATT bitmask is selected; logs at looprate if ATT_FAST and PIDS bitmask set Log_Write_PIDS(); } // log EKF attitude data always at 10Hz unless ATTITUDE_FAST, then do it in the 25Hz loop if (!should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_EKF_POS(); } if ((FRAME_CONFIG == HELI_FRAME) || should_log(MASK_LOG_MOTBATT)) { // always write motors log if we are a heli motors->Log_Write(); } if (should_log(MASK_LOG_RCIN)) { logger.Write_RCIN(); #if AP_RSSI_ENABLED if (rssi.enabled()) { logger.Write_RSSI(); } #endif } if (should_log(MASK_LOG_RCOUT)) { logger.Write_RCOUT(); } if (should_log(MASK_LOG_NTUN) && (flightmode->requires_GPS() || landing_with_GPS() || !flightmode->has_manual_throttle())) { pos_control->write_log(); } if (should_log(MASK_LOG_IMU) || should_log(MASK_LOG_IMU_FAST) || should_log(MASK_LOG_IMU_RAW)) { AP::ins().Write_Vibration(); } if (should_log(MASK_LOG_CTUN)) { attitude_control->control_monitor_log(); #if HAL_PROXIMITY_ENABLED g2.proximity.log(); // Write proximity sensor distances #endif #if AP_BEACON_ENABLED g2.beacon.log(); #endif } #if AP_WINCH_ENABLED if (should_log(MASK_LOG_ANY)) { g2.winch.write_log(); } #endif #if HAL_MOUNT_ENABLED if (should_log(MASK_LOG_CAMERA)) { camera_mount.write_log(); } #endif } // twentyfive_hz_logging - should be run at 25hz void Copter::twentyfive_hz_logging() { if (should_log(MASK_LOG_ATTITUDE_FAST)) { Log_Write_EKF_POS(); } if (should_log(MASK_LOG_IMU) && !(should_log(MASK_LOG_IMU_FAST))) { AP::ins().Write_IMU(); } #if MODE_AUTOROTATE_ENABLED if (should_log(MASK_LOG_ATTITUDE_MED) || should_log(MASK_LOG_ATTITUDE_FAST)) { //update autorotation log g2.arot.Log_Write_Autorotation(); } #endif #if HAL_GYROFFT_ENABLED if (should_log(MASK_LOG_FTN_FAST)) { gyro_fft.write_log_messages(); } #endif } #endif // HAL_LOGGING_ENABLED // three_hz_loop - 3hz loop void Copter::three_hz_loop() { // check if we've lost contact with the ground station failsafe_gcs_check(); // check if we've lost terrain data failsafe_terrain_check(); // check for deadreckoning failsafe failsafe_deadreckon_check(); //update transmitter based in flight tuning tuning(); // check if avoidance should be enabled based on alt low_alt_avoidance(); } // ap_value calculates a 32-bit bitmask representing various pieces of // state about the Copter. It replaces a global variable which was // used to track this state. uint32_t Copter::ap_value() const { uint32_t ret = 0; const bool *b = (const bool *)≈ for (uint8_t i=0; iarmed()) { update_using_interlock(); // check the user hasn't updated the frame class or type motors->set_frame_class_and_type((AP_Motors::motor_frame_class)g2.frame_class.get(), (AP_Motors::motor_frame_type)g.frame_type.get()); #if FRAME_CONFIG != HELI_FRAME // set all throttle channel settings motors->update_throttle_range(); #endif } // update assigned functions and enable auxiliary servos AP::srv().enable_aux_servos(); #if HAL_LOGGING_ENABLED // log terrain data terrain_logging(); #endif #if HAL_ADSB_ENABLED adsb.set_is_flying(!ap.land_complete); #endif AP_Notify::flags.flying = !ap.land_complete; // slowly update the PID notches with the average loop rate attitude_control->set_notch_sample_rate(AP::scheduler().get_filtered_loop_rate_hz()); pos_control->get_accel_z_pid().set_notch_sample_rate(AP::scheduler().get_filtered_loop_rate_hz()); #if AC_CUSTOMCONTROL_MULTI_ENABLED custom_control.set_notch_sample_rate(AP::scheduler().get_filtered_loop_rate_hz()); #endif } void Copter::init_simple_bearing() { // capture current cos_yaw and sin_yaw values simple_cos_yaw = ahrs.cos_yaw(); simple_sin_yaw = ahrs.sin_yaw(); // initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000); super_simple_cos_yaw = simple_cos_yaw; super_simple_sin_yaw = simple_sin_yaw; #if HAL_LOGGING_ENABLED // log the simple bearing if (should_log(MASK_LOG_ANY)) { Log_Write_Data(LogDataID::INIT_SIMPLE_BEARING, ahrs.yaw_sensor); } #endif } // update_simple_mode - rotates pilot input if we are in simple mode void Copter::update_simple_mode(void) { float rollx, pitchx; // exit immediately if no new radio frame or not in simple mode if (simple_mode == SimpleMode::NONE || !ap.new_radio_frame) { return; } // mark radio frame as consumed ap.new_radio_frame = false; if (simple_mode == SimpleMode::SIMPLE) { // rotate roll, pitch input by -initial simple heading (i.e. north facing) rollx = channel_roll->get_control_in()*simple_cos_yaw - channel_pitch->get_control_in()*simple_sin_yaw; pitchx = channel_roll->get_control_in()*simple_sin_yaw + channel_pitch->get_control_in()*simple_cos_yaw; }else{ // rotate roll, pitch input by -super simple heading (reverse of heading to home) rollx = channel_roll->get_control_in()*super_simple_cos_yaw - channel_pitch->get_control_in()*super_simple_sin_yaw; pitchx = channel_roll->get_control_in()*super_simple_sin_yaw + channel_pitch->get_control_in()*super_simple_cos_yaw; } // rotate roll, pitch input from north facing to vehicle's perspective channel_roll->set_control_in(rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw()); channel_pitch->set_control_in(-rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw()); } // update_super_simple_bearing - adjusts simple bearing based on location // should be called after home_bearing has been updated void Copter::update_super_simple_bearing(bool force_update) { if (!force_update) { if (simple_mode != SimpleMode::SUPERSIMPLE) { return; } if (home_distance() < SUPER_SIMPLE_RADIUS) { return; } } const int32_t bearing = home_bearing(); // check the bearing to home has changed by at least 5 degrees if (labs(super_simple_last_bearing - bearing) < 500) { return; } super_simple_last_bearing = bearing; const float angle_rad = radians((super_simple_last_bearing+18000)/100); super_simple_cos_yaw = cosf(angle_rad); super_simple_sin_yaw = sinf(angle_rad); } void Copter::read_AHRS(void) { // we tell AHRS to skip INS update as we have already done it in FAST_TASK. ahrs.update(true); } // read baro and log control tuning void Copter::update_altitude() { // read in baro altitude read_barometer(); #if HAL_LOGGING_ENABLED if (should_log(MASK_LOG_CTUN)) { Log_Write_Control_Tuning(); if (!should_log(MASK_LOG_FTN_FAST)) { #if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED AP::ins().write_notch_log_messages(); #endif #if HAL_GYROFFT_ENABLED gyro_fft.write_log_messages(); #endif } } #endif } // vehicle specific waypoint info helpers bool Copter::get_wp_distance_m(float &distance) const { // see GCS_MAVLINK_Copter::send_nav_controller_output() distance = flightmode->wp_distance() * 0.01; return true; } // vehicle specific waypoint info helpers bool Copter::get_wp_bearing_deg(float &bearing) const { // see GCS_MAVLINK_Copter::send_nav_controller_output() bearing = flightmode->wp_bearing() * 0.01; return true; } // vehicle specific waypoint info helpers bool Copter::get_wp_crosstrack_error_m(float &xtrack_error) const { // see GCS_MAVLINK_Copter::send_nav_controller_output() xtrack_error = flightmode->crosstrack_error() * 0.01; return true; } // get the target earth-frame angular velocities in rad/s (Z-axis component used by some gimbals) bool Copter::get_rate_ef_targets(Vector3f& rate_ef_targets) const { // always returns zero vector if landed or disarmed if (copter.ap.land_complete) { rate_ef_targets.zero(); } else { rate_ef_targets = attitude_control->get_rate_ef_targets(); } return true; } /* constructor for main Copter class */ Copter::Copter(void) : flight_modes(&g.flight_mode1), pos_variance_filt(FS_EKF_FILT_DEFAULT), vel_variance_filt(FS_EKF_FILT_DEFAULT), hgt_variance_filt(FS_EKF_FILT_DEFAULT), flightmode(&mode_stabilize), simple_cos_yaw(1.0f), super_simple_cos_yaw(1.0), land_accel_ef_filter(LAND_DETECTOR_ACCEL_LPF_CUTOFF), rc_throttle_control_in_filter(1.0f), inertial_nav(ahrs), param_loader(var_info) { } Copter copter; AP_Vehicle& vehicle = copter; AP_HAL_MAIN_CALLBACKS(&copter);