--[[ perform simple aerobatic manoeuvres in AUTO mode cmd = 1: axial rolls, arg1 = roll rate dps, arg2 = number of rolls cmd = 2: loops or 180deg return, arg1 = pitch rate dps, arg2 = number of loops, if zero do a 1/2 cuban8-like return cmd = 3: rolling circle, arg1 = radius, arg2 = number of rolls cmd = 4: knife edge at any angle, arg1 = roll angle to hold, arg2 = duration cmd = 5: pause, holding heading and alt to allow stabilization after a move, arg1 = duration in seconds ]]-- -- setup param block for aerobatics, reserving 30 params beginning with AERO_ local PARAM_TABLE_KEY = 70 local PARAM_TABLE_PREFIX = 'AEROM_' assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table') -- add a parameter and bind it to a variable function bind_add_param(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX .. name) end HGT_P = bind_add_param('HGT_P', 1, 1) HGT_I = bind_add_param('HGT_I', 2, 2) HGT_KE_BIAS = bind_add_param('HGT_KE_ADD', 3, 20) THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80) SPD_P = bind_add_param('SPD_P', 5, 5) SPD_I = bind_add_param('SPD_I', 6, 25) ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3) ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25) AUTO_MIS = bind_add_param('AUTO_MIS', 9, 0) AUTO_RAD = bind_add_param('AUTO_RAD', 10, 40) TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0) ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0) ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8) --local VEL_TC = bind_add_param('VEL_TC', 8, 3) function bind_add_param(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX .. name) end local NAV_TAKEOFF = 22 local NAV_WAYPOINT = 16 local NAV_SCRIPT_TIME = 42702 local LOOP_RATE = 20 DO_JUMP = 177 k_throttle = 70 local TRIM_THROTTLE = Parameter("TRIM_THROTTLE") local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM") local RLL2SRV_TCONST = Parameter("RLL2SRV_TCONST") local PITCH_TCONST = Parameter("PTCH2SRV_TCONST") local last_roll_err = 0.0 local last_id = 0 local initial_yaw_deg = 0 local wp_yaw_deg = 0 local initial_height = 0 local repeat_count = 0 local running = false local roll_stage = 0 local MIN_SPEED = 0.1 local LOOKAHEAD = 1 -- constrain a value between limits function constrain(v, vmin, vmax) if v < vmin then v = vmin end if v > vmax then v = vmax end return v end -- roll angle error 180 wrap to cope with errors while in inverted segments function roll_angle_error_wrap(roll_angle_error) if math.abs(roll_angle_error) > 180 then if roll_angle_error > 0 then roll_angle_error = roll_angle_error - 360 else roll_angle_error= roll_angle_error +360 end end return roll_angle_error end --roll controller to keep wings level in earth frame. if arg is 0 then level is at only 0 deg, otherwise its at 180/-180 roll also for loops function earth_frame_wings_level(arg) local roll_deg = math.deg(ahrs:get_roll()) local roll_angle_error = 0.0 if (roll_deg > 90 or roll_deg < -90) and arg ~= 0 then roll_angle_error = 180 - roll_deg else roll_angle_error = - roll_deg end return roll_angle_error_wrap(roll_angle_error)/(RLL2SRV_TCONST:get()) end function wrap_360(angle) local res = math.fmod(angle, 360.0) if res < 0 then res = res + 360.0 end return res end function wrap_180(angle) local res = wrap_360(angle) if res > 180 then res = res - 360 end return res end function wrap_pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_180(angle_deg) return math.rad(angle_wrapped) end function wrap_2pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_360(angle_deg) return math.rad(angle_wrapped) end function euler_rad_ef_to_bf(roll, pitch, yaw, ef_roll_rate, ef_pitch_rate, ef_yaw_rate) local sr = math.sin(roll) local cr = math.cos(roll) local sp = math.sin(pitch) local cp = math.cos(pitch) local sy = math.sin(yaw) local cy = math.cos(yaw) local bf_roll_rate = ef_roll_rate + -sp*ef_yaw_rate local bf_pitch_rate = cr*ef_pitch_rate + sr*cp*ef_yaw_rate local bf_yaw_rate = -sr*ef_pitch_rate + cr*cp*ef_yaw_rate return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate) end -- a PI controller implemented as a Lua object local function PI_controller(kP,kI,iMax) -- the new instance. You can put public variables inside this self -- declaration if you want to local self = {} -- private fields as locals local _kP = kP or 0.0 local _kI = kI or 0.0 local _kD = kD or 0.0 local _iMax = iMax local _last_t = nil local _I = 0 local _P = 0 local _total = 0 local _counter = 0 local _target = 0 local _current = 0 -- update the controller. function self.update(target, current) local now = millis():tofloat() * 0.001 if not _last_t then _last_t = now end local dt = now - _last_t _last_t = now local err = target - current _counter = _counter + 1 local P = _kP * err _I = _I + _kI * err * dt if _iMax then _I = constrain(_I, -_iMax, iMax) end local I = _I local ret = P + I _target = target _current = current _P = P _total = ret return ret end -- reset integrator to an initial value function self.reset(integrator) _I = integrator end function self.set_I(I) _kI = I end function self.set_P(P) _kP = P end function self.set_Imax(Imax) _iMax = Imax end -- log the controller internals function self.log(name, add_total) -- allow for an external addition to total logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total) end -- return the instance return self end local function speed_controller(kP_param,kI_param, kFF_roll_param, kFF_pitch_param, Imax) local self = {} local kFF_roll = kFF_roll_param local kFF_pitch = kFF_pitch_param local PI = PI_controller(kP_param:get(), kI_param:get(), Imax) function self.update(target) local current_speed = ahrs:get_velocity_NED():length() local throttle = PI.update(target, current_speed) throttle = throttle + math.sin(ahrs:get_pitch())*kFF_pitch:get() throttle = throttle + math.abs(math.sin(ahrs:get_roll()))*kFF_roll:get() return throttle end function self.reset() PI.reset(0) local temp_throttle = self.update(ahrs:get_velocity_NED():length()) local current_throttle = SRV_Channels:get_output_scaled(k_throttle) PI.reset(current_throttle-temp_throttle) end return self end local function height_controller(kP_param,kI_param,KnifeEdge_param,Imax) local self = {} local kP = kP_param local kI = kI_param local KnifeEdge = KnifeEdge_param local PI = PI_controller(kP:get(), kI:get(), Imax) function self.update(target) local target_pitch = PI.update(target, ahrs:get_position():alt()*0.01) local roll_rad = ahrs:get_roll() local ke_add = math.abs(math.sin(roll_rad)) * KnifeEdge:get() target_pitch = target_pitch + ke_add PI.log("HPI", ke_add) return target_pitch end function self.reset() PI.reset(math.max(math.deg(ahrs:get_pitch()), 3.0)) PI.set_P(kP:get()) PI.set_I(kI:get()) end return self end local height_PI = height_controller(HGT_P, HGT_I, HGT_KE_BIAS, 20.0) local speed_PI = speed_controller(SPD_P, SPD_I, HGT_KE_BIAS, THR_PIT_FF, 100.0) function sgn(x) local eps = 0.000001 if (x > eps) then return 1.0 elseif x < eps then return -1.0 else return 0.0 end end function euler_rate_ef_to_bf(rrate, prate, yrate, roll, pitch, yaw) local sr = math.sin(roll) local cr = math.cos(roll) local sp = math.sin(pitch) local cp = math.cos(pitch) local sy = math.sin(yaw) local cy = math.cos(yaw) local bf_roll_rate = rrate -sp*yrate local bf_pitch_rate = cr*prate + sr*cp*yrate local bf_yaw_rate = -sr*prate + cr*cp*yrate return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate) end -- a controller to target a zero pitch angle and zero heading change, used in a roll -- output is a body frame pitch rate, with convergence over time tconst in seconds function pitch_controller(target_pitch_deg, target_yaw_deg, tconst) local roll_deg = math.deg(ahrs:get_roll()) local pitch_deg = math.deg(ahrs:get_pitch()) local yaw_deg = math.deg(ahrs:get_yaw()) -- get earth frame pitch and yaw rates local ef_pitch_rate = (target_pitch_deg - pitch_deg) / tconst local ef_yaw_rate = wrap_180(target_yaw_deg - yaw_deg) / tconst local bf_pitch_rate = math.sin(math.rad(roll_deg)) * ef_yaw_rate + math.cos(math.rad(roll_deg)) * ef_pitch_rate local bf_yaw_rate = math.cos(math.rad(roll_deg)) * ef_yaw_rate - math.sin(math.rad(roll_deg)) * ef_pitch_rate return bf_pitch_rate, bf_yaw_rate end -- a controller for throttle to account for pitch function throttle_controller() local pitch_rad = ahrs:get_pitch() local thr_ff = THR_PIT_FF:get() local throttle = TRIM_THROTTLE:get() + math.sin(pitch_rad) * thr_ff return constrain(throttle, 0, 100.0) end -- recover entry altitude function recover_alt() local target_pitch = height_PI.update(initial_height) local pitch_rate, yaw_rate = pitch_controller(target_pitch, wp_yaw_deg, PITCH_TCONST:get()) return target_pitch, pitch_rate, yaw_rate end function get_wp_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end function resolve_jump(i) local m = mission:get_item(i) while m:command() == DO_JUMP do i = math.floor(m:param1()) m = mission:get_item(i) end return i end --------Trajectory definitions--------------------- function climbing_circle(t, radius, height, arg3, arg4) local angle = t*math.pi*2 local vec = makeVector3f(radius*math.sin(angle), radius*(1.0-math.cos(angle)), -math.sin(0.5*angle)*height) return vec, 0.0 end function figure_eight(t, r, bank_angle, arg3, arg4) local r_sign = sgn(r) assert(math.abs(r_sign) > 0.1) local r = math.abs(r) local T = 3.0*math.pi*r + r*math.sqrt(2) + 2*r local rsqr2 = r*math.sqrt(2) local pos local roll if (t < rsqr2/T) then pos = makeVector3f(T*t, 0.0, 0.0) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0)/T) then pos = makeVector3f(r*math.cos(T*t/r - math.sqrt(2) - math.pi/2)+rsqr2, r_sign*(r + r*math.sin(T*t/r - math.sqrt(2) - math.pi/2)), 0) roll = math.rad(bank_angle) elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r/4)/T) then pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))), 0) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + 3*r/4)/T) then pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))), 0) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r)/T) then pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))), 0) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0)/T) then pos = makeVector3f(r*math.cos(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4) - r*math.sqrt(2.0), r_sign*(r + r*math.sin(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4)), 0) roll = -math.rad(bank_angle) elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r/4.0)/T) then pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))), 0) roll = 0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + 3*r/4.0)/T) then pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))), 0) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r)/T) then pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), r_sign*(r +r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))), 0) roll = 0.0 else pos = makeVector3f(r*math.cos(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))+rsqr2, r_sign*(r + r*math.sin(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))), 0) roll = math.rad(bank_angle) end return pos, roll end function loop(t, radius, bank_angle, arg3, arg4) local num_loops = math.abs(arg3) if(arg3 <= 0.0) then num_loops = 1 end t = num_loops*t*math.pi*2 local vec = makeVector3f(math.sin(t), 0.0, -1.0 + math.cos(t)) return vec:scale(radius), math.rad(bank_angle) end function straight_roll(t, length, num_rolls, arg3, arg4) local vec = makeVector3f(t*length, 0.0, 0.0) return vec, t*num_rolls*2*math.pi end function straight_flight(t, length, bank_angle, arg3, arg4) local pos = makeVector3f(t*length, 0, 0) local roll = math.rad(bank_angle) return pos, roll end function rolling_circle(t, radius, num_rolls, arg3, arg4) --t = t*math.pi*2 local vec = Vector3f() if radius < 0.0 then vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0) else vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0) end return vec:scale(math.abs(radius)), t*num_rolls*2*math.pi end function banked_circle(t, radius, bank_angle, arg3, arg4) --t = t*math.pi*2 local vec = Vector3f() if radius < 0.0 then vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0) else vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0) end return vec:scale(math.abs(radius)), math.deg(bank_angle) end function half_cuban_eight(t, r, unused, arg3, arg4) local T = 3.0*math.pi*r/2.0 + 2*r*math.sqrt(2) + r local trsqr2 = 2*r*math.sqrt(2) local pos local roll if (t < trsqr2/T) then pos = makeVector3f(T*t, 0.0, 0.0) roll = 0.0 elseif (t < (trsqr2 + 5.0*math.pi*r/4.0)/T) then pos = makeVector3f(r*math.cos(T*t/r - 2*math.sqrt(2) - math.pi/2)+trsqr2, 0, -r - r*math.sin(T*t/r - 2*math.sqrt(2) - math.pi/2)) roll = 0.0 elseif (t < (trsqr2 + 5.0*math.pi*r/4.0 + r/4)/T) then pos = makeVector3f(3*r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2))) roll = 0.0 elseif (t < (trsqr2 + 5.0*math.pi*r/4.0 + 3*r/4)/T) then pos = makeVector3f(3*r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2))) roll = (t - (trsqr2 + 5.0*math.pi*r/4.0 + r/4)/T)*2*math.pi*T/(r) elseif (t < (trsqr2 + 5.0*math.pi*r/4.0 + r)/T) then pos = makeVector3f(3*r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2))) roll = math.pi else pos = makeVector3f(r*math.cos(-T*t/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4), 0, -r -r*math.sin(-T*t/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4)) roll = math.pi --roll = 0 end return pos, roll end function cuban_eight(t, r, unused, arg3, arg4) local T = 3.0*math.pi*r + r*math.sqrt(2) + 2*r local rsqr2 = r*math.sqrt(2) local pos local roll if (t < rsqr2/T) then pos = makeVector3f(T*t, 0.0, 0.0) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0)/T) then pos = makeVector3f(r*math.cos(T*t/r - math.sqrt(2) - math.pi/2)+rsqr2, 0, -r - r*math.sin(T*t/r - math.sqrt(2) - math.pi/2)) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r/4)/T) then pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))) roll = 0.0 elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + 3*r/4)/T) then pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))) roll = (t - (rsqr2 + 5.0*math.pi*r/4.0 + r/4)/T)*2*math.pi*T/(r) elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r)/T) then pos = makeVector3f(r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2))*(-r*math.sqrt(2))) roll = math.pi elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0)/T) then pos = makeVector3f(r*math.cos(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4) - r*math.sqrt(2.0), 0, -r - r*math.sin(-T*t/r +5.0*math.pi/4.0 + math.sqrt(2) + 1 - math.pi/4)) roll = math.pi elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r/4.0)/T) then pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))) roll = math.pi elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + 3*r/4.0)/T) then pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))) roll = math.pi +(t - (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r/4.0)/T)*2 *math.pi*T/(r) elseif (t < (rsqr2 + 5.0*math.pi*r/4.0 + r + 3*math.pi*r/2.0 + r)/T) then pos = makeVector3f(-r/math.sqrt(2) + (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2)*(r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*t/r - 5*math.pi/4 - math.sqrt(2) - 1 - 3*math.pi/2.0 )*(-r*math.sqrt(2))) roll = 0.0 else pos = makeVector3f(r*math.cos(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))+rsqr2, 0, -r - r*math.sin(T*t/r - (6*math.pi/4.0 + math.sqrt(2) +2 ))) roll = 0.0 end return pos, roll end function half_reverse_cuban_eight(t, r, arg2, arg3, arg4) local T = 3.0*math.pi*r/2.0 + 2*r*math.sqrt(2) + r local trsqr2 = 2*r*math.sqrt(2) local pos local roll if(t < (math.pi*r/4)/T) then pos = makeVector3f(r*math.cos(-T*(1-t)/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4), 0, -r -r*math.sin(-T*(1-t)/r +5.0*math.pi/4.0 + 2*math.sqrt(2) + 1 - math.pi/4)) roll = 0 elseif (t < (math.pi*r/4 + r/4)/T) then pos = makeVector3f(3*r/math.sqrt(2) + (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2))) roll = 0 elseif (t < (math.pi*r/4 + 3*r/4)/T) then pos = makeVector3f(3*r/math.sqrt(2) + (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2))) roll = (t - (math.pi*r/4 + r/4)/T)*2*math.pi*T/(r) elseif (t < (math.pi*r/4 + r)/T) then pos = makeVector3f(3*r/math.sqrt(2) + (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2)), 0, -r -r/math.sqrt(2) - (T*(1-t)/r - 5*math.pi/4 - 2*math.sqrt(2))*(-r*math.sqrt(2))) roll = math.pi elseif (t < (3*math.pi*r/2 + r) /T) then pos = makeVector3f(r*math.cos(T*(1-t)/r - 2*math.sqrt(2) - math.pi/2)+trsqr2, 0, -r - r*math.sin(T*(1-t)/r - 2*math.sqrt(2) - math.pi/2)) roll = math.pi else pos = makeVector3f(T*(1-t), 0.0, 0.0) roll = math.pi end return pos, roll end function humpty_bump(t, r, h, arg3, arg4) assert(h >= 2*r) local T = 2*(math.pi*r + h - r) local l = h - 2*r local pos local roll if (t < (math.pi*r/2)/T) then pos = makeVector3f(r*math.cos(T*t/r - math.pi/2), 0, -r -r*math.sin(T*t/r - math.pi/2)) roll = 0 elseif (t < (math.pi*r/2 + l/4)/T) then pos = makeVector3f(r, 0, -r -(T*t - r*math.pi/2)) roll = 0 elseif (t < (math.pi*r/2 + 3*l/4)/T) then pos = makeVector3f(r, 0, -r -(T*t - r*math.pi/2)) roll = (t - (math.pi*r/2 + l/4)/T)*2*math.pi*T/l elseif (t < (math.pi*r/2 + l)/T) then pos = makeVector3f(r, 0, -r -(T*t - r*math.pi/2)) roll = math.pi elseif (t < (3*math.pi*r/2 + l)/T) then pos = makeVector3f(2*r + r*math.cos(T*t/r - 3*math.pi/2 - l/r), 0, -r-l +r*math.sin(T*t/r - 3*math.pi/2 - l/r)) roll = math.pi elseif (t < (3*math.pi*r/2 + 2*l)/T) then pos = makeVector3f(3*r,0, -r -l + (T*t - 3*r*math.pi/2.0 -l)) roll = math.pi elseif (t < (2*math.pi*r + 2*l)/T) then pos = makeVector3f(2*r + r*math.cos(T*t/r - 3*math.pi/2 -2*l/r),0, -r + r*math.sin(T*t/r - 3*math.pi/2 -2*l/r)) roll = math.pi else pos = makeVector3f(2*r -(T*t - 2*r*math.pi - 2*l), 0, 0) roll = math.pi end return pos, roll end function scale_figure_eight(t, r, bank_angle, arg3, arg4) local r_sign = sgn(r) assert(math.abs(r_sign) > 0.1) local r = math.abs(r) local T = 4*math.pi + 2 local pos local roll if (t < (math.pi/2)/T) then pos = makeVector3f(r*math.cos(T*t - math.pi/2), r_sign*(r +r*math.sin(T*t - math.pi/2)), 0) roll = math.rad(bank_angle) elseif (t < (5*math.pi/2)/T) then pos = makeVector3f(2*r + r*math.cos(T*t + math.pi/2), r_sign*(r -r*math.sin(T*t + math.pi/2)), 0) roll = -math.rad(bank_angle) elseif (t < (4*math.pi)/T) then pos = makeVector3f(r*math.cos(T*t - math.pi/2), r_sign*(r + r*math.sin(T*t - math.pi/2)), 0) roll = math.rad(bank_angle) else pos = makeVector3f(r*(T*t - 4*math.pi), 0, 0) roll = 0 end return pos, roll end function test_height_control(t, length, arg2, arg3, arg4) if t < 0.25 then return makeVector3f(t*length, 0.0, 0.0), 0.0 elseif t < 0.5 then return makeVector3f(t*length, 0.0, -10.0), 0.0 elseif t < 0.75 then return makeVector3f(t*length, 0.0, -20.0), 0.0 else return makeVector3f(t*length, 0.0, -30.0), 0.0 end end function test_lane_change(t, length, arg2, arg3, arg4) if t < 0.25 then return makeVector3f(t*length, 0.0, 0.0), 0.0 elseif t < 0.5 then return makeVector3f(t*length, 10.0, 0.0), 0.0 elseif t < 0.75 then return makeVector3f(t*length, 20.0, 0.0), 0.0 else return makeVector3f(t*length, 30.0, 0.0), 0.0 end end function path_straight_roll(t, length, num_rolls, arg3, arg4) local vec = makeVector3f(t*length, 0.0, 0.0) return vec, t*num_rolls*2*math.pi end --todo: change y coordinate to z for vertical box --function aerobatic_box(t, l, w, r): function horizontal_rectangle(t, total_length, total_width, r, arg4) local r_sign = sgn(r) assert(math.abs(r_sign) > 0.1) local r = math.abs(r) gcs:send_text(0,string.format("rect %f %f", r_sign, r)) local bank_angle = math.abs(arg4) local l = total_length - 2*r local w = total_width - 2*r local perim = 2*l + 2*w + 2*math.pi*r local pos if (t < 0.5*l/(perim)) then pos = makeVector3f(perim*t, 0.0, 0.0) elseif (t < (0.5*l + 0.5*math.pi*r)/perim) then pos = makeVector3f(0.5*l + r*math.sin((perim*t - 0.5*l)/r), r_sign*(r*(1 - math.cos((perim*t - 0.5*l)/r))), 0.0) elseif (t < (0.5*l + 0.5*math.pi*r + w)/perim) then pos = makeVector3f(0.5*l + r, r_sign*(r + (perim*t - (0.5*l + 0.5*math.pi*r))), 0.0) elseif(t < (0.5*l + math.pi*r + w)/perim) then pos = makeVector3f(0.5*l + r + r*(-1 + math.cos((perim*t - (0.5*l + 0.5*math.pi*r + w))/r)), r_sign*(r + w + r*(math.sin((perim*t - (0.5*l + 0.5*math.pi*r + w))/r))), 0.0) elseif(t < (1.5*l + math.pi*r + w)/perim) then pos = makeVector3f(0.5*l - (perim*t - (0.5*l + math.pi*r + w)), r_sign*(2*r + w), 0.0) elseif(t < (1.5*l + 1.5*math.pi*r + w)/perim) then pos = makeVector3f(-0.5*l + r*(-math.sin((perim*t - (1.5*l + math.pi*r + w))/r)), r_sign*(2*r + w + r*(-1 + math.cos((perim*t - (1.5*l + math.pi*r + w))/r))), 0.0) elseif(t < (1.5*l + 1.5*math.pi*r + 2*w)/perim) then pos = makeVector3f(-0.5*l -r, r_sign*(w + r - (perim*t - (1.5*l + 1.5*math.pi*r + w))), 0.0) elseif(t < (1.5*l + 2*math.pi*r + 2*w)/perim) then pos = makeVector3f(-0.5*l -r + r*(1 - math.cos((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r)), r_sign*(r + r*(-math.sin((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r))), 0.0) else pos = makeVector3f(-0.5*l + perim*t - (1.5*l + 2*math.pi*r + 2*w), 0.0, 0.0) end return pos, math.rad(bank_angle) end function vertical_aerobatic_box(t, total_length, total_width, r, arg4) --gcs:send_text(0, string.format("t val: %f", t)) local q = Quaternion() q:from_euler(-math.rad(90), 0, 0) local point, angle = horizontal_rectangle(t, total_length, total_width, math.abs(r), arg4) q:earth_to_body(point) return point, angle end --------------------------------------------------- function target_groundspeed() return ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01 end --Estimate the length of the path in metres function path_length(path_f, arg1, arg2, arg3, arg4) local dt = 0.01 local total = 0.0 for i = 0, math.floor(1.0/dt) do local t = i*dt local t2 = t + dt local v1 = path_f(t, arg1, arg2, arg3, arg4) local v2 = path_f(t2, arg1, arg2, arg3, arg4) local dv = v2-v1 total = total + dv:length() end return total end --args: -- path_f: path function returning position -- t: normalised [0, 1] time -- arg1, arg2: arguments for path function -- orientation: maneuver frame orientation --returns: requested position in maneuver frame function rotate_path(path_f, t, arg1, arg2, arg3, arg4, orientation, offset) point, angle = path_f(t, arg1, arg2, arg3, arg4) orientation:earth_to_body(point) --TODO: rotate angle? return point+offset, angle end --args: -- dt: sample time -- cutoff_freq: cutoff frequency for low pass filter, in Hz --returns: alpha value required to implement LP filter function calc_lowpass_alpha_dt(dt, cutoff_freq) if dt <= 0.0 or cutoff_freq <= 0.0 then return 1.0 end local rc = 1.0/(2.0*3.14159265*cutoff_freq) local drc = dt/(dt+rc) if drc < 0.0 then return 0.0 end if drc > 1.0 then return 1.0 end return drc end --Wrapper to construct a Vector3f{x, y, z} from (x, y, z) function makeVector3f(x, y, z) local vec = Vector3f() vec:x(x) vec:y(y) vec:z(z) return vec end --Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle --Note that the rotation will not be unique. function vectors_to_rotation(vector1, vector2) axis = vector1:cross(vector2) if axis:length() < 0.00001 then local vec = Vector3f() vec:x(1) return vec, 0 end axis:normalize() angle = vector1:angle(vector2) return axis, angle end --returns Quaternion function vectors_to_rotation_w_roll(vector1, vector2, roll) axis, angle = vectors_to_rotation(vector1, vector2) local vector_rotation = Quaternion() vector_rotation:from_axis_angle(axis, angle) local roll_rotation = Quaternion() roll_rotation:from_euler(roll, 0, 0) local total_rot = vector_rotation*roll_rotation return to_axis_and_angle(total_rot) end --Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle function vectors_to_angular_rate(vector1, vector2, time_constant) axis, angle = vectors_to_rotation(vector1, vector2) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll) axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function to_axis_and_angle(quat) local axis_angle = Vector3f() quat:to_axis_angle(axis_angle) angle = axis_angle:length() if(angle < 0.00001) then return makeVector3f(1.0, 0.0, 0.0), 0.0 end return axis_angle:scale(1.0/angle), angle end function test_axis_and_angle() local quat = Quaternion() quat:q1(1.0) local axis, angle = to_axis_and_angle(quat) gcs:send_text(0, string.format("axis angle test: %f %f %f %f", axis:x(), axis:y(), axis:z(), angle)) local quat2 = Quaternion() quat2:q1(math.cos(math.pi/4)) quat2:q2(0) quat2:q3(0) quat2:q4(math.sin(math.pi/4)) local axis2, angle2 = to_axis_and_angle(quat2) gcs:send_text(0, string.format("axis angle test2: %f %f %f %f", axis2:x(), axis2:y(), axis2:z(), angle2)) local quat3 = Quaternion() quat3:q1(math.cos(math.pi/2)) quat3:q2(0) quat3:q3(math.sin(math.pi/2)) quat3:q4(0) local axis3, angle3 = to_axis_and_angle(quat3) gcs:send_text(0, string.format("axis angle test3: %f %f %f %f", axis3:x(), axis3:y(), axis3:z(), angle3)) end --Just used this to test the above function, can probably delete now. function test_angular_rate() local vector1 = makeVector3f(1.0, 0.0, 0.0) local vector2 = makeVector3f(1.0, 1.0, 0.0) local angular_rate = vectors_to_angular_rate(vector1, vector2, 1.0) gcs:send_text(0, string.format("angular rate: %.1f %.1f %.1f", math.deg(angular_rate:x()), math.deg(angular_rate:y()), math.deg(angular_rate:z()))) end --projects x onto the othogonal subspace of span(unit_v) function ortho_proj(x, unit_v) local temp_x = unit_v:cross(x) return unit_v:cross(temp_x) end --test_angular_rate() --test_axis_and_angle() -- function maneuver_to_body(vec) -- path_var.initial_maneuver_to_earth:earth_to_body(vec) -- vec = ahrs:earth_to_body(vec) -- return vec -- end --returns body frame angular rate as Vec3f -- function path_proportional_error_correction(current_pos_ef, target_pos_ef, forward_velocity, target_velocity_ef) -- if forward_velocity <= MIN_SPEED then -- return makeVector3f(0.0, 0.0, 0.0) -- end -- --time over which to correct position error -- local time_const_pos_to_vel = POS_TC:get() -- --time over which to achieve desired velocity -- local time_const_vel_to_acc = VEL_TC:get() -- local pos_err_ef = target_pos_ef - current_pos_ef -- local correction_vel_ef = pos_err_ef:scale(1.0/time_const_pos_to_vel) -- correction_vel_ef = correction_vel_ef:scale(forward_velocity) -- local curr_vel_ef = ahrs:get_velocity_NED() -- local vel_error_ef = correction_vel_ef - curr_vel_ef -- local acc_err_bf = ahrs:earth_to_body(vel_error_ef):scale(1.0/time_const_vel_to_acc) -- local ang_vel = makeVector3f(0, -acc_err_bf:z()/forward_velocity, acc_err_bf:y()/forward_velocity) -- return ang_vel -- end -- log a pose from position and quaternion attitude function log_pose(logname, pos, quat) logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff', pos:x(), pos:y(), pos:z(), quat:q1(), quat:q2(), quat:q3(), quat:q4(), math.deg(quat:get_euler_roll()), math.deg(quat:get_euler_pitch()), math.deg(quat:get_euler_yaw())) end local path_var = {} path_var.count = 0 path_var.initial_ori = Quaternion() path_var.initial_maneuver_to_earth = Quaternion() function do_path(path, initial_yaw_deg, arg1, arg2, arg3, arg4) local now = millis():tofloat() * 0.001 path_var.count = path_var.count + 1 local target_dt = 1.0/LOOP_RATE if not running then running = true path_var.length = path_length(path, arg1, arg2, arg3, arg4) path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0) local speed = target_groundspeed() --assuming constant velocity path_var.total_time = path_var.length/speed path_var.last_pos, last_angle = path(0.0, arg1, arg2, arg3, arg4) --position at t0 --deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg)) path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg)) path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin() local corrected_position_t0_ef, angle_t0 = rotate_path(path, LOOKAHEAD*target_dt/path_var.total_time, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local corrected_position_t1_ef, angle_t1 = rotate_path(path, 2*LOOKAHEAD*target_dt/path_var.total_time, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) path_var.start_pos = ahrs:get_position() path_var.path_int = path_var.start_pos:copy() height_PI.reset() speed_PI.reset() path_var.accumulated_orientation_rel_ef = path_var.initial_ori path_var.time_correction = 0.0 path_var.filtered_angular_velocity = Vector3f() path_var.start_time = now + target_dt path_var.last_time = now path_var.average_dt = target_dt path_var.scaled_dt = target_dt path_var.path_t = 0 path_var.target_speed = speed return true end --TODO: dt taken from actual loop rate or just desired loop rate? --local dt = now - path_var.last_time --local dt = target_dt local vel_length = ahrs:get_velocity_NED():length() local actual_dt = now - path_var.last_time --path_var.average_dt = 0.98*path_var.average_dt + 0.02*actual_dt --local scaled_dt = path_var.average_dt--*vel_length/path_var.target_speed --path_var.scaled_dt = scaled_dt local local_n_dt = actual_dt/path_var.total_time path_var.last_time = now --path_var.path_t = path_var.path_t + scaled_dt/path_var.total_time --TODO: Fix this exit condition --local t = path_var.path_t if path_var.path_t > 1.0 then --done return false end --[[ calculate positions and angles at previous, current and next time steps --]] next_target_pos_ef = next_target_pos_ef local p0, r0 = rotate_path(path, path_var.path_t + 0*local_n_dt, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local p1, r1 = rotate_path(path, path_var.path_t + 1*local_n_dt, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local p2, r2 = rotate_path(path, path_var.path_t + 2*local_n_dt, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) local current_measured_pos_ef = ahrs:get_relative_position_NED_origin() --[[ get tangents to the path --]] local tangent1_ef = p1 - p0 local tangent2_ef = p2 - p1 local tv_unit = tangent2_ef:copy() tv_unit:normalize() --[[ use actual vehicle velocity to calculate how far along the path we have progressed --]] local v = ahrs:get_velocity_NED() local path_dist = v:dot(tv_unit)*actual_dt if path_dist < 0 then gcs:send_text(0, string.format("aborting")) return false end local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt) path_var.path_t = path_var.path_t + path_t_delta --[[ recalculate the current path position and angle based on actual delta time --]] p2, r2 = rotate_path(path, path_var.path_t + path_t_delta, arg1, arg2, arg3, arg4, path_var.initial_ori, path_var.initial_ef_pos) -- tangents needs to be recalculated tangent1_ef = p1 - p0 tangent2_ef = p2 - p1 tv_unit = tangent2_ef:copy() tv_unit:normalize() -- error in position versus current point on the path local pos_error_ef = current_measured_pos_ef - p1 --[[ calculate a time correction. We first get the projection of the position error onto the track. This tells us how far we are ahead or behind on the track --]] local path_dist_err_m = tv_unit:dot(pos_error_ef) -- normalize against the total path length local path_err_t = path_dist_err_m / path_var.length -- don't allow the path to go backwards in time, or faster than twice the actual rate path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta) -- correct time to bring us back into sync path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t --[[ calculation of error correction, calculating acceleration needed to bring us back on the path, and body rates in pitch and yaw to achieve those accelerations --]] -- component of pos_err perpendicular to the current path tangent local B = ortho_proj(pos_error_ef, tv_unit) -- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant local B_dot = ortho_proj(v, tv_unit) -- gains for error correction. local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get()) local acc_err_bf = ahrs:earth_to_body(acc_err_ef) local TAS = constrain(ahrs:get_EAS2TAS()*ahrs:airspeed_estimate(), 3, 100) local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS local corr_rate_bf_z_rads = acc_err_bf:y()/TAS local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads) local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1)) --[[ work out body frame path rate, this is based on two adjacent tangents on the path --]] local path_rate_ef_rads = vectors_to_angular_rate(tangent1_ef, tangent2_ef, actual_dt) local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1)) local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps) -- set the path roll rate path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt)) --[[ calculate body frame roll rate to achieved the desired roll angle relative to the maneuver path --]] local zero_roll_angle_delta = Quaternion() zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt) path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef path_var.accumulated_orientation_rel_ef:normalize() local mf_axis = makeVector3f(1, 0, 0) path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis) local orientation_rel_mf_with_roll_angle = Quaternion() orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1) orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef --[[ calculate the error correction for the roll versus the desired roll --]] local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse() roll_error:normalize() local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error) local time_const_roll = ROLL_CORR_TC:get() local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll) local err_angle_rate_bf_dps = ahrs:earth_to_body(err_angle_rate_ef_rads):scale(math.deg(1)) -- zero any non-roll components err_angle_rate_bf_dps:y(0) err_angle_rate_bf_dps:z(0) --[[ total angular rate is sum of path rate, correction rate and roll correction rate --]] local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps --[[ log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll --]] log_pose('POSM', current_measured_pos_ef, ahrs:get_quaternion()) log_pose('POST', p1, orientation_rel_ef_with_roll_angle) logger.write('AETM', 'T,Terr','ff', path_var.path_t, path_err_t) logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz', 'ffffffffff', cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(), path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(), err_angle_rate_bf_dps:x(), tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z()) --log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef) --[[ run the throttle based speed controller --]] local target_speed = target_groundspeed()--TRIM_ARSPD_CM:get()*0.01 throttle = speed_PI.update(target_speed) throttle = constrain(throttle, 0, 100.0) vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z()) return true end command_table = {} command_table[1]={figure_eight, "Figure Eight"} command_table[2]={loop, "Loop"} command_table[3]={horizontal_rectangle, "Horizontal Rectangle"} command_table[4]={climbing_circle, "Climbing Circle"} command_table[5]={vertical_aerobatic_box, "Vertical Box"} command_table[6]={banked_circle, "Banked Circle"} command_table[7]={straight_roll, "Axial Roll"} command_table[8]={rolling_circle, "Rolling Circle"} command_table[9]={half_cuban_eight, "Half Cuban Eight"} command_table[10]={half_reverse_cuban_eight, "Half Reverse Cuban Eight"} command_table[11]={cuban_eight, "Cuban Eight"} command_table[12]={humpty_bump, "Humpty Bump"} command_table[13]={straight_flight, "Straight Flight"} command_table[14]={scale_figure_eight, "Scale Figure Eight"} -- get a location structure from a waypoint number function get_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end -- set wp location function wp_setloc(wp, loc) wp:x(loc:lat()) wp:y(loc:lng()) wp:z(loc:alt()*0.01) end -- add a waypoint to the end of the mission function wp_add(loc,ctype,param1,param2) local wp = mavlink_mission_item_int_t() wp_setloc(wp,loc) wp:command(ctype) local seq = mission:num_commands() wp:seq(seq) wp:param1(param1) wp:param2(param2) wp:frame(3) -- global position, relative alt mission:set_item(seq, wp) end -- add a NAV_SCRIPT_TIME waypoint to the end of the mission function wp_add_nav_script(cmdid,arg1,arg2,arg3,arg4) local wp = mavlink_mission_item_int_t() wp:command(NAV_SCRIPT_TIME) local seq = mission:num_commands() wp:seq(seq) wp:param1(cmdid) wp:param2(0) -- timeout wp:param3(arg1) wp:param4(arg2) wp:x(arg3) wp:y(arg4) mission:set_item(seq, wp) end --[[ create auto mission 1 --]] function create_auto_mission1() local N = mission:num_commands() if N ~= 4 then gcs:send_text(0,string.format("Auto mission needs takeoff and 2 WPs (got %u)", N)) return end local takeoff_m = mission:get_item(1) if takeoff_m:command() ~= NAV_TAKEOFF then gcs:send_text(0,string.format("First WP needs to be takeoff")) return end local wp1 = get_location(2) local wp2 = get_location(3) local wp_dist = wp1:get_distance(wp2) local wp_bearing = math.deg(wp1:get_bearing(wp2)) local radius = AUTO_RAD:get() gcs:send_text(0, string.format("WP Distance %.0fm bearing %.1fdeg", wp_dist, wp_bearing)) -- find mid-point, 25% and 75% points local wp_mid = wp1:copy() wp_mid:offset_bearing(wp_bearing, wp_dist*0.5) local wp_25pct = wp1:copy() wp_25pct:offset_bearing(wp_bearing, wp_dist*0.25) local wp_75pct = wp1:copy() wp_75pct:offset_bearing(wp_bearing, wp_dist*0.75) gcs:send_text(0,"Adding half cuban eight") wp_add_nav_script(9, radius, 0, 0, 0) gcs:send_text(0,"Adding loop") wp_add(wp_mid, NAV_WAYPOINT, 0, 1) wp_add_nav_script(2, radius, 0, 0, 0) gcs:send_text(0,"Adding half reverse cuban eight") wp_add(wp1, NAV_WAYPOINT, 0, 0) wp_add_nav_script(10, radius, 0, 0, 0) gcs:send_text(0,"Adding axial roll") wp_add(wp_25pct, NAV_WAYPOINT, 0, 1) wp_add_nav_script(7, wp_dist*0.5, 1, 0, 0) gcs:send_text(0,"Adding humpty bump") wp_add(wp2, NAV_WAYPOINT, 0, 1) wp_add_nav_script(12, radius*0.25, 0.5*radius, 0, 0) gcs:send_text(0,"Adding cuban eight") wp_add(wp_mid, NAV_WAYPOINT, 0, 0) wp_add_nav_script(11, radius, 0, 0, 0) wp_add(wp1, NAV_WAYPOINT, 0, 0) end function create_auto_mission() if AUTO_MIS:get() == 1 then create_auto_mission1() else gcs:send_text(0, string.format("Unknown auto mission", AUTO_MIS:get())) end end function update() -- check if we should create a mission if AUTO_MIS:get() > 0 then create_auto_mission() AUTO_MIS:set_and_save(0) end id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time() if id then if id ~= last_id then -- we've started a new command running = false last_id = id repeat_count = 0 initial_yaw_deg = math.deg(ahrs:get_yaw()) gcs:send_text(0, string.format("Starting %s!", command_table[cmd][2] )) initial_height = ahrs:get_position():alt()*0.01 -- work out yaw between previous WP and next WP local cnum = mission:get_current_nav_index() -- find previous nav waypoint local loc_prev = get_wp_location(cnum-1) local loc_next = get_wp_location(cnum+1) local i= cnum-1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i-1 loc_prev = get_wp_location(i) end -- find next nav waypoint i = cnum+1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i+1 loc_next = get_wp_location(resolve_jump(i)) end wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next)) if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then gcs:send_text(0, string.format("Doing turnaround!")) wp_yaw_deg = wrap_180(wp_yaw_deg + 180) end initial_yaw_deg = wp_yaw_deg end local done = not do_path(command_table[cmd][1], initial_yaw_deg, arg1, arg2, arg3, arg4) if done then vehicle:nav_script_time_done(last_id) gcs:send_text(0, string.format("Finishing %s!", command_table[cmd][2] )) running = false end else running = false end return update, 1000.0/LOOP_RATE end return update()