// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /// @file Derivative.cpp /// @brief A class to implement a derivative (slope) filter /// See http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/ // #include #include #include #include template void DerivativeFilter::update(T sample, uint32_t timestamp) { uint8_t i = FilterWithBuffer::sample_index; uint8_t i1; if (i == 0) { i1 = FILTER_SIZE-1; } else { i1 = i-1; } if (_timestamps[i1] == timestamp) { // this is not a new timestamp - ignore return; } // add timestamp before we apply to FilterWithBuffer _timestamps[i] = timestamp; // call parent's apply function to get the sample into the array FilterWithBuffer::apply(sample); _new_data = true; } template float DerivativeFilter::slope(void) { if (!_new_data) { return _last_slope; } float result = 0; // use f() to make the code match the maths a bit better. Note // that unlike an average filter, we care about the order of the elements #define f(i) FilterWithBuffer::samples[(((FilterWithBuffer::sample_index-1)+i+1)+3*FILTER_SIZE/2) % FILTER_SIZE] #define x(i) _timestamps[(((FilterWithBuffer::sample_index-1)+i+1)+3*FILTER_SIZE/2) % FILTER_SIZE] if (_timestamps[FILTER_SIZE-1] == _timestamps[FILTER_SIZE-2]) { // we haven't filled the buffer yet - assume zero derivative return 0; } // N in the paper is FILTER_SIZE switch (FILTER_SIZE) { case 5: result = 2*2*(f(1) - f(-1)) / (x(1) - x(-1)) + 4*1*(f(2) - f(-2)) / (x(2) - x(-2)); result /= 8; break; case 7: result = 2*5*(f(1) - f(-1)) / (x(1) - x(-1)) + 4*4*(f(2) - f(-2)) / (x(2) - x(-2)) + 6*1*(f(3) - f(-3)) / (x(3) - x(-3)); result /= 32; break; case 9: result = 2*14*(f(1) - f(-1)) / (x(1) - x(-1)) + 4*14*(f(2) - f(-2)) / (x(2) - x(-2)) + 6* 6*(f(3) - f(-3)) / (x(3) - x(-3)) + 8* 1*(f(4) - f(-4)) / (x(4) - x(-4)); result /= 128; break; case 11: result = 2*42*(f(1) - f(-1)) / (x(1) - x(-1)) + 4*48*(f(2) - f(-2)) / (x(2) - x(-2)) + 6*27*(f(3) - f(-3)) / (x(3) - x(-3)) + 8* 8*(f(4) - f(-4)) / (x(4) - x(-4)) + 10* 1*(f(5) - f(-5)) / (x(5) - x(-5)); result /= 512; break; default: result = 0; break; } // cope with numerical errors if (isnan(result) || isinf(result)) { result = 0; } _new_data = false; _last_slope = result; return result; } // reset - clear all samples template void DerivativeFilter::reset(void) { // call parent's apply function to get the sample into the array FilterWithBuffer::reset(); } // add new instances as needed here template void DerivativeFilter::update(float sample, uint32_t timestamp); template float DerivativeFilter::slope(void); template void DerivativeFilter::reset(void); template void DerivativeFilter::update(float sample, uint32_t timestamp); template float DerivativeFilter::slope(void); template void DerivativeFilter::reset(void); template void DerivativeFilter::update(float sample, uint32_t timestamp); template float DerivativeFilter::slope(void); template void DerivativeFilter::reset(void); template void DerivativeFilter::update(float sample, uint32_t timestamp); template float DerivativeFilter::slope(void); template void DerivativeFilter::reset(void);